About the Project

expansion of arbitrary vector

AdvancedHelp

(0.001 seconds)

11—20 of 351 matching pages

11: 2.1 Definitions and Elementary Properties
§2.1(iii) Asymptotic Expansions
Symbolically, … For an example see (2.8.15). …
§2.1(iv) Uniform Asymptotic Expansions
§2.1(v) Generalized Asymptotic Expansions
12: 16.22 Asymptotic Expansions
§16.22 Asymptotic Expansions
Asymptotic expansions of G p , q m , n ( z ; 𝐚 ; 𝐛 ) for large z are given in Luke (1969a, §§5.7 and 5.10) and Luke (1975, §5.9). For asymptotic expansions of Meijer G -functions with large parameters see Fields (1973, 1983).
13: Bibliography L
  • C. Leubner and H. Ritsch (1986) A note on the uniform asymptotic expansion of integrals with coalescing endpoint and saddle points. J. Phys. A 19 (3), pp. 329–335.
  • X. Li and R. Wong (1994) Error bounds for asymptotic expansions of Laplace convolutions. SIAM J. Math. Anal. 25 (6), pp. 1537–1553.
  • J. L. López (2001) Uniform asymptotic expansions of symmetric elliptic integrals. Constr. Approx. 17 (4), pp. 535–559.
  • D. Ludwig (1966) Uniform asymptotic expansions at a caustic. Comm. Pure Appl. Math. 19, pp. 215–250.
  • A. E. Lynas-Gray (1993) VOIGTL – A fast subroutine for Voigt function evaluation on vector processors. Comput. Phys. Comm. 75 (1-2), pp. 135–142.
  • 14: 13.31 Approximations
    §13.31(i) Chebyshev-Series Expansions
    Luke (1969b, pp. 35 and 25) provides Chebyshev-series expansions of M ( a , b , x ) and U ( a , b , x ) that include the intervals 0 x α and α x < , respectively, where α is an arbitrary positive constant. …
    13.31.1 A n ( z ) = s = 0 n ( n ) s ( n + 1 ) s ( a ) s ( b ) s ( a + 1 ) s ( b + 1 ) s ( n ! ) 2 F 3 3 ( n + s , n + 1 + s , 1 1 + s , a + 1 + s , b + 1 + s ; z ) ,
    13.31.3 z a U ( a , 1 + a b , z ) = lim n A n ( z ) B n ( z ) .
    15: 11.11 Asymptotic Expansions of Anger–Weber Functions
    §11.11 Asymptotic Expansions of Anger–Weber Functions
    where … and … For an extension of (11.11.17) (and (11.11.16)) into a complete asymptotic expansion, see Nemes (2020). …
    16: Bibliography O
  • F. Oberhettinger (1973) Fourier Expansions. A Collection of Formulas. Academic Press, New York-London.
  • A. B. Olde Daalhuis and N. M. Temme (1994) Uniform Airy-type expansions of integrals. SIAM J. Math. Anal. 25 (2), pp. 304–321.
  • A. B. Olde Daalhuis (1994) Asymptotic expansions for q -gamma, q -exponential, and q -Bessel functions. J. Math. Anal. Appl. 186 (3), pp. 896–913.
  • A. B. Olde Daalhuis (1998c) On the resurgence properties of the uniform asymptotic expansion of the incomplete gamma function. Methods Appl. Anal. 5 (4), pp. 425–438.
  • F. W. J. Olver (1977b) Connection formulas for second-order differential equations having an arbitrary number of turning points of arbitrary multiplicities. SIAM J. Math. Anal. 8 (4), pp. 673–700.
  • 17: Bibliography S
  • A. Sharples (1971) Uniform asymptotic expansions of modified Mathieu functions. J. Reine Angew. Math. 247, pp. 1–17.
  • A. Sidi (2012a) Euler-Maclaurin expansions for integrals with arbitrary algebraic endpoint singularities. Math. Comp. 81 (280), pp. 2159–2173.
  • A. Sidi (2012b) Euler-Maclaurin expansions for integrals with arbitrary algebraic-logarithmic endpoint singularities. Constr. Approx. 36 (3), pp. 331–352.
  • A. J. Stone and C. P. Wood (1980) Root-rational-fraction package for exact calculation of vector-coupling coefficients. Comput. Phys. Comm. 21 (2), pp. 195–205.
  • W. F. Sun (1996) Uniform asymptotic expansions of Hermite polynomials. M. Phil. thesis, City University of Hong Kong.
  • 18: 33.12 Asymptotic Expansions for Large η
    §33.12 Asymptotic Expansions for Large η
    For derivations and additional terms in the expansions in this subsection see Abramowitz and Rabinowitz (1954) and Fröberg (1955). …
    §33.12(ii) Uniform Expansions
    The first set is in terms of Airy functions and the expansions are uniform for fixed and δ z < , where δ is an arbitrary small positive constant. …
    19: 28.25 Asymptotic Expansions for Large z
    §28.25 Asymptotic Expansions for Large z
    28.25.1 M ν ( 3 , 4 ) ( z , h ) e ± i ( 2 h cosh z ( 1 2 ν + 1 4 ) π ) ( π h ( cosh z + 1 ) ) 1 2 m = 0 D m ± ( 4 i h ( cosh z + 1 ) ) m ,
    The expansion (28.25.1) is valid for M ν ( 3 ) ( z , h ) when
    28.25.4 z + , π + δ ph h + z 2 π δ ,
    where δ again denotes an arbitrary small positive constant. …
    20: 10.17 Asymptotic Expansions for Large Argument
    §10.17 Asymptotic Expansions for Large Argument
    §10.17(i) Hankel’s Expansions
    §10.17(ii) Asymptotic Expansions of Derivatives
    §10.17(v) Exponentially-Improved Expansions