# expansion in spherical Bessel functions

(0.014 seconds)

## 1—10 of 32 matching pages

##### 1: 30.10 Series and Integrals
For expansions in products of spherical Bessel functions, see Flammer (1957, Chapter 6).
##### 7: 6.18 Methods of Computation
For small or moderate values of $x$ and $|z|$, the expansion in power series (§6.6) or in series of spherical Bessel functions6.10(ii)) can be used. …
##### 8: 10.74 Methods of Computation
In the case of the spherical Bessel functions the explicit formulas given in §§10.49(i) and 10.49(ii) are terminating cases of the asymptotic expansions given in §§10.17(i) and 10.40(i) for the Bessel functions and modified Bessel functions. …
##### 9: 10.1 Special Notation
The main functions treated in this chapter are the Bessel functions $J_{\nu}\left(z\right)$, $Y_{\nu}\left(z\right)$; Hankel functions ${H^{(1)}_{\nu}}\left(z\right)$, ${H^{(2)}_{\nu}}\left(z\right)$; modified Bessel functions $I_{\nu}\left(z\right)$, $K_{\nu}\left(z\right)$; spherical Bessel functions $\mathsf{j}_{n}\left(z\right)$, $\mathsf{y}_{n}\left(z\right)$, ${\mathsf{h}^{(1)}_{n}}\left(z\right)$, ${\mathsf{h}^{(2)}_{n}}\left(z\right)$; modified spherical Bessel functions ${\mathsf{i}^{(1)}_{n}}\left(z\right)$, ${\mathsf{i}^{(2)}_{n}}\left(z\right)$, $\mathsf{k}_{n}\left(z\right)$; Kelvin functions $\operatorname{ber}_{\nu}\left(x\right)$, $\operatorname{bei}_{\nu}\left(x\right)$, $\operatorname{ker}_{\nu}\left(x\right)$, $\operatorname{kei}_{\nu}\left(x\right)$. For the spherical Bessel functions and modified spherical Bessel functions the order $n$ is a nonnegative integer. … Abramowitz and Stegun (1964): $j_{n}(z)$, $y_{n}(z)$, $h_{n}^{(1)}(z)$, $h_{n}^{(2)}(z)$, for $\mathsf{j}_{n}\left(z\right)$, $\mathsf{y}_{n}\left(z\right)$, ${\mathsf{h}^{(1)}_{n}}\left(z\right)$, ${\mathsf{h}^{(2)}_{n}}\left(z\right)$, respectively, when $n\geq 0$. Jeffreys and Jeffreys (1956): $\mathrm{Hs}_{\nu}(z)$ for ${H^{(1)}_{\nu}}\left(z\right)$, $\mathrm{Hi}_{\nu}(z)$ for ${H^{(2)}_{\nu}}\left(z\right)$, $\mathrm{Kh}_{\nu}(z)$ for $(2/\pi)K_{\nu}\left(z\right)$. … For older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).
##### 10: 10.57 Uniform Asymptotic Expansions for Large Order
###### §10.57 Uniform Asymptotic Expansions for Large Order
Asymptotic expansions for $\mathsf{j}_{n}\left((n+\tfrac{1}{2})z\right)$, $\mathsf{y}_{n}\left((n+\tfrac{1}{2})z\right)$, ${\mathsf{h}^{(1)}_{n}}\left((n+\tfrac{1}{2})z\right)$, ${\mathsf{h}^{(2)}_{n}}\left((n+\tfrac{1}{2})z\right)$, ${\mathsf{i}^{(1)}_{n}}\left((n+\tfrac{1}{2})z\right)$, and $\mathsf{k}_{n}\left((n+\tfrac{1}{2})z\right)$ as $n\to\infty$ that are uniform with respect to $z$ can be obtained from the results given in §§10.20 and 10.41 by use of the definitions (10.47.3)–(10.47.7) and (10.47.9). Subsequently, for ${\mathsf{i}^{(2)}_{n}}\left((n+\tfrac{1}{2})z\right)$ the connection formula (10.47.11) is available. For the corresponding expansion for $\mathsf{j}_{n}'\left((n+\tfrac{1}{2})z\right)$ use …Similarly for the expansions of the derivatives of the other six functions.