About the Project

eta function

AdvancedHelp

(0.004 seconds)

31—40 of 73 matching pages

31: 12.17 Physical Applications
By using instead coordinates of the parabolic cylinder ξ , η , ζ , defined by …
32: Bibliography B
  • C. Bardin, Y. Dandeu, L. Gauthier, J. Guillermin, T. Lena, J. M. Pernet, H. H. Wolter, and T. Tamura (1972) Coulomb functions in entire ( η , ρ )-plane. Comput. Phys. Comm. 3 (2), pp. 73–87.
  • A. R. Barnett, D. H. Feng, J. W. Steed, and L. J. B. Goldfarb (1974) Coulomb wave functions for all real η and ρ . Comput. Phys. Comm. 8 (5), pp. 377–395.
  • 33: 23.21 Physical Applications
    23.21.2 ( η ζ ) ( ζ ξ ) ( ξ η ) 2 = ( ζ η ) f ( ξ ) f ( ξ ) ξ + ( ξ ζ ) f ( η ) f ( η ) η + ( η ξ ) f ( ζ ) f ( ζ ) ζ ,
    34: 22.15 Inverse Functions
    22.15.2 cn ( η , k ) = x , 1 x 1 ,
    35: Bibliography N
  • T. D. Newton (1952) Coulomb Functions for Large Values of the Parameter η . Technical report Atomic Energy of Canada Limited, Chalk River, Ontario.
  • 36: 28.32 Mathematical Applications
    28.32.3 2 V ξ 2 + 2 V η 2 + 1 2 c 2 k 2 ( cosh ( 2 ξ ) cos ( 2 η ) ) V = 0 .
    37: 12.14 The Function W ( a , x )
    12.14.31 W ( 1 2 μ 2 , μ t 2 ) l ( μ ) e μ 2 η 2 1 2 e 1 4 π μ 2 ( 1 t 2 ) 1 4 s = 0 ( 1 ) s 𝒜 ~ s ( t ) μ 2 s ,
    38: 23.22 Methods of Computation
    The modular functions λ ( τ ) , J ( τ ) , and η ( τ ) are also obtainable in a similar manner from their definitions in §23.15(ii). …
    39: 10.41 Asymptotic Expansions for Large Order
    10.41.4 K ν ( ν z ) ( π 2 ν ) 1 2 e ν η ( 1 + z 2 ) 1 4 k = 0 ( 1 ) k U k ( p ) ν k ,
    10.41.5 I ν ( ν z ) ( 1 + z 2 ) 1 4 e ν η ( 2 π ν ) 1 2 z k = 0 V k ( p ) ν k ,
    10.41.6 K ν ( ν z ) ( π 2 ν ) 1 2 ( 1 + z 2 ) 1 4 e ν η z k = 0 ( 1 ) k V k ( p ) ν k ,
    10.41.7 η = ( 1 + z 2 ) 1 2 + ln z 1 + ( 1 + z 2 ) 1 2 ,
    40: 28.31 Equations of Whittaker–Hill and Ince
    28.31.3 w ′′ + ξ sin ( 2 z ) w + ( η p ξ cos ( 2 z ) ) w = 0 .
    28.31.18 w ′′ + ( η 1 8 ξ 2 ( p + 1 ) ξ cos ( 2 z ) + 1 8 ξ 2 cos ( 4 z ) ) w = 0 ,