About the Project

elliptic curves

AdvancedHelp

(0.002 seconds)

11—20 of 27 matching pages

11: Bibliography C
  • J. E. Cremona (1997) Algorithms for Modular Elliptic Curves. 2nd edition, Cambridge University Press, Cambridge.
  • 12: Bibliography S
  • J. H. Silverman and J. Tate (1992) Rational Points on Elliptic Curves. Undergraduate Texts in Mathematics, Springer-Verlag, New York.
  • 13: 22.3 Graphics
    See accompanying text
    Figure 22.3.2: k = 0.7 , 3 K x 3 K , K = 1.8456 . For cn ( x , k ) the curve for k = 1 / 2 = 0.70710 is a boundary between the curves that have an inflection point in the interval 0 x 2 K ( k ) , and its translates, and those that do not; see Walker (1996, p. 146). Magnify
    14: 19.25 Relations to Other Functions
    §19.25(ii) Bulirsch’s Integrals as Symmetric Integrals
    §19.25(v) Jacobian Elliptic Functions
    §19.25(vi) Weierstrass Elliptic Functions
    The sign on the right-hand side of (19.25.40) will change whenever one crosses a curve on which σ j 2 ( z ) < 0 , for some j . …
    15: 19.17 Graphics
    §19.17 Graphics
    See Figures 19.17.119.17.8 for symmetric elliptic integrals with real arguments. …
    See accompanying text
    Figure 19.17.7: Cauchy principal value of R J ( 0.5 , y , 1 , p ) for y = 0 ,  0.01 ,  0.05 ,  0.2 ,  1 , 1 p < 0 . …As p 0 the curve for y = 0 has the finite limit 8.10386 ; see (19.20.10). Magnify
    See accompanying text
    Figure 19.17.8: R J ( 0 , y , 1 , p ) , 0 y 1 , 1 p 2 . … Magnify 3D Help
    16: 28.32 Mathematical Applications
    §28.32(i) Elliptical Coordinates and an Integral Relationship
    If the boundary conditions in a physical problem relate to the perimeter of an ellipse, then elliptical coordinates are convenient. … Also let be a curve (possibly improper) such that the quantity …defines a solution of Mathieu’s equation, provided that (in the case of an improper curve) the integral converges with respect to z uniformly on compact subsets of . …
    17: Bibliography F
  • H. E. Fettis (1970) On the reciprocal modulus relation for elliptic integrals. SIAM J. Math. Anal. 1 (4), pp. 524–526.
  • A. Fletcher (1948) Guide to tables of elliptic functions. Math. Tables and Other Aids to Computation 3 (24), pp. 229–281.
  • C. H. Franke (1965) Numerical evaluation of the elliptic integral of the third kind. Math. Comp. 19 (91), pp. 494–496.
  • C. K. Frederickson and P. L. Marston (1992) Transverse cusp diffraction catastrophes produced by the reflection of ultrasonic tone bursts from a curved surface in water. J. Acoust. Soc. Amer. 92 (5), pp. 2869–2877.
  • C. K. Frederickson and P. L. Marston (1994) Travel time surface of a transverse cusp caustic produced by reflection of acoustical transients from a curved metal surface. J. Acoust. Soc. Amer. 95 (2), pp. 650–660.
  • 18: Bibliography D
  • S. D. Daymond (1955) The principal frequencies of vibrating systems with elliptic boundaries. Quart. J. Mech. Appl. Math. 8 (3), pp. 361–372.
  • B. Deconinck and H. Segur (2000) Pole dynamics for elliptic solutions of the Korteweg-de Vries equation. Math. Phys. Anal. Geom. 3 (1), pp. 49–74.
  • B. Deconinck and M. van Hoeij (2001) Computing Riemann matrices of algebraic curves. Phys. D 152/153, pp. 28–46.
  • A. Dienstfrey and J. Huang (2006) Integral representations for elliptic functions. J. Math. Anal. Appl. 316 (1), pp. 142–160.
  • P. L. Duren (1991) The Legendre Relation for Elliptic Integrals. In Paul Halmos: Celebrating 50 Years of Mathematics, J. H. Ewing and F. W. Gehring (Eds.), pp. 305–315.
  • 19: Bibliography H
  • H. Hancock (1958) Elliptic Integrals. Dover Publications Inc., New York.
  • J. R. Herndon (1961a) Algorithm 55: Complete elliptic integral of the first kind. Comm. ACM 4 (4), pp. 180.
  • J. R. Herndon (1961b) Algorithm 56: Complete elliptic integral of the second kind. Comm. ACM 4 (4), pp. 180–181.
  • D. R. Herrick and S. O’Connor (1998) Inverse virial symmetry of diatomic potential curves. J. Chem. Phys. 109 (1), pp. 11–19.
  • 20: Bibliography W
  • E. L. Wachspress (2000) Evaluating elliptic functions and their inverses. Comput. Math. Appl. 39 (3-4), pp. 131–136.
  • J. Walker (1983) Caustics: Mathematical curves generated by light shined through rippled plastic. Scientific American 249, pp. 146–153.
  • P. L. Walker (2009) The distribution of the zeros of Jacobian elliptic functions with respect to the parameter k . Comput. Methods Funct. Theory 9 (2), pp. 579–591.
  • A. Weil (1999) Elliptic Functions According to Eisenstein and Kronecker. Classics in Mathematics, Springer-Verlag, Berlin.
  • E. Witten (1987) Elliptic genera and quantum field theory. Comm. Math. Phys. 109 (4), pp. 525–536.