About the Project

double

AdvancedHelp

(0.000 seconds)

31—40 of 93 matching pages

31: 20.6 Power Series
In the double series the order of summation is important only when j = 1 . For further information on δ 2 j see §23.9: since the double sums in (20.6.6) and (23.9.1) are the same, we have δ 2 n = c n / ( 2 n 1 ) when n 2 .
32: Bibliography G
  • A. Gil and J. Segura (1997) Evaluation of Legendre functions of argument greater than one. Comput. Phys. Comm. 105 (2-3), pp. 273–283.
  • A. Gil and J. Segura (1998) A code to evaluate prolate and oblate spheroidal harmonics. Comput. Phys. Comm. 108 (2-3), pp. 267–278.
  • E. S. Ginsberg and D. Zaborowski (1975) Algorithm 490: The Dilogarithm function of a real argument [S22]. Comm. ACM 18 (4), pp. 200–202.
  • M. Goano (1995) Algorithm 745: Computation of the complete and incomplete Fermi-Dirac integral. ACM Trans. Math. Software 21 (3), pp. 221–232.
  • Z. Gong, L. Zejda, W. Dappen, and J. M. Aparicio (2001) Generalized Fermi-Dirac functions and derivatives: Properties and evaluation. Comput. Phys. Comm. 136 (3), pp. 294–309.
  • 33: Bibliography Z
  • M. R. Zaghloul (2016) Remark on “Algorithm 916: computing the Faddeyeva and Voigt functions”: efficiency improvements and Fortran translation. ACM Trans. Math. Softw. 42 (3), pp. 26:1–26:9.
  • S. Zhang and J. Jin (1996) Computation of Special Functions. John Wiley & Sons Inc., New York.
  • 34: 22.6 Elementary Identities
    §22.6(ii) Double Argument
    35: 33.23 Methods of Computation
    Noble (2004) obtains double-precision accuracy for W η , μ ( 2 ρ ) for a wide range of parameters using a combination of recurrence techniques, power-series expansions, and numerical quadrature; compare (33.2.7). …
    36: 5.4 Special Values and Extrema
    5.4.2 n !! = { 2 1 2 n Γ ( 1 2 n + 1 ) , n  even , π 1 2 2 1 2 n + 1 2 Γ ( 1 2 n + 1 ) , n  odd .
    37: 18.37 Classical OP’s in Two or More Variables
    18.37.2 x 2 + y 2 < 1 R m , n ( α ) ( x + i y ) R j , ( α ) ( x i y ) ( 1 x 2 y 2 ) α d x d y = 0 , m j and/or n .
    18.37.4 x 2 + y 2 < 1 R m , n ( α ) ( x + i y ) ( x i y ) m j ( x + i y ) n j ( 1 x 2 y 2 ) α d x d y = 0 , j = 1 , 2 , , min ( m , n ) ;
    18.37.8 0 < y < x < 1 P m , n α , β , γ ( x , y ) P j , α , β , γ ( x , y ) ( 1 x ) α ( x y ) β y γ d x d y = 0 , m j and/or n .
    38: Bibliography S
  • M. J. Seaton (1982) Coulomb functions analytic in the energy. Comput. Phys. Comm. 25 (1), pp. 87–95.
  • J. Segura and A. Gil (1998) Parabolic cylinder functions of integer and half-integer orders for nonnegative arguments. Comput. Phys. Comm. 115 (1), pp. 69–86.
  • B. L. Shea (1988) Algorithm AS 239. Chi-squared and incomplete gamma integral. Appl. Statist. 37 (3), pp. 466–473.
  • P. N. Shivakumar and J. Xue (1999) On the double points of a Mathieu equation. J. Comput. Appl. Math. 107 (1), pp. 111–125.
  • W. V. Snyder (1993) Algorithm 723: Fresnel integrals. ACM Trans. Math. Software 19 (4), pp. 452–456.
  • 39: 10.75 Tables
  • Döring (1971) tabulates the first 100 values of ν ( > 1 ) for which J ν ( x ) has the double zero x = ν , 10D.

  • Kerimov and Skorokhodov (1985c) tabulates 201 double zeros of J ν ′′ ( x ) , 10 double zeros of J ν ′′′ ( x ) , 101 double zeros of Y ν ( x ) , 201 double zeros of Y ν ′′ ( x ) , and 10 double zeros of Y ν ′′′ ( x ) , all to 8 or 9D.

  • Kerimov and Skorokhodov (1987) tabulates 100 complex double zeros ν of Y ν ( z e π i ) and H ν ( 1 ) ( z e π i ) , 8D.

  • 40: Bibliography C
  • J. B. Campbell (1984) Determination of ν -zeros of Hankel functions. Comput. Phys. Comm. 32 (3), pp. 333–339.
  • J. A. Christley and I. J. Thompson (1994) CRCWFN: Coupled real Coulomb wavefunctions. Comput. Phys. Comm. 79 (1), pp. 143–155.
  • D. S. Clemm (1969) Algorithm 352: Characteristic values and associated solutions of Mathieu’s differential equation. Comm. ACM 12 (7), pp. 399–407.
  • L. D. Cloutman (1989) Numerical evaluation of the Fermi-Dirac integrals. The Astrophysical Journal Supplement Series 71, pp. 677–699.
  • W. J. Cody (1983) Algorithm 597: Sequence of modified Bessel functions of the first kind. ACM Trans. Math. Software 9 (2), pp. 242–245.