About the Project

digamma function

AdvancedHelp

(0.005 seconds)

11—20 of 64 matching pages

11: 14.17 Integrals
14.17.10 1 1 𝖯 ν ( x ) 𝖯 λ ( x ) d x = 2 ( 2 sin ( ν π ) sin ( λ π ) ( ψ ( ν + 1 ) ψ ( λ + 1 ) ) + π sin ( ( λ ν ) π ) ) π 2 ( λ ν ) ( λ + ν + 1 ) , λ ν or ν 1 .
14.17.13 1 1 ( 𝖰 ν ( x ) ) 2 d x = π 2 2 ( 1 + cos 2 ( ν π ) ) ψ ( ν + 1 ) 2 ( 2 ν + 1 ) , ν 1 2 or 1 , 2 , 3 , .
14.17.19 1 Q ν ( x ) Q λ ( x ) d x = ψ ( λ + 1 ) ψ ( ν + 1 ) ( λ ν ) ( λ + ν + 1 ) , ( λ + ν ) > 1 , λ ν , λ and ν 1 , 2 , 3 , .
14.17.20 1 ( Q ν ( x ) ) 2 d x = ψ ( ν + 1 ) 2 ν + 1 , ν > 1 2 .
12: 33.19 Power-Series Expansions in r
33.19.3 2 π h ( ϵ , ; r ) = k = 0 2 ( 2 k ) ! γ k k ! ( 2 r ) k k = 0 δ k r k + + 1 A ( ϵ , ) ( 2 ln | 2 r / κ | + ψ ( + 1 + κ ) + ψ ( + κ ) ) f ( ϵ , ; r ) , r 0 .
13: 5.6 Inequalities
5.6.5 exp ( ( 1 s ) ψ ( x + s 1 / 2 ) ) Γ ( x + 1 ) Γ ( x + s ) exp ( ( 1 s ) ψ ( x + 1 2 ( s + 1 ) ) ) , 0 < s < 1 .
14: 25.8 Sums
25.8.5 k = 2 ζ ( k ) z k = γ z z ψ ( 1 z ) , | z | < 1 .
15: 6.6 Power Series
where ψ denotes the logarithmic derivative of the gamma function5.2(i)). …
16: 5.19 Mathematical Applications
5.19.3 S = ψ ( 1 2 ) 2 ψ ( 2 3 ) γ = 3 ln 3 2 ln 2 1 3 π 3 .
17: 10.31 Power Series
10.31.1 K n ( z ) = 1 2 ( 1 2 z ) n k = 0 n 1 ( n k 1 ) ! k ! ( 1 4 z 2 ) k + ( 1 ) n + 1 ln ( 1 2 z ) I n ( z ) + ( 1 ) n 1 2 ( 1 2 z ) n k = 0 ( ψ ( k + 1 ) + ψ ( n + k + 1 ) ) ( 1 4 z 2 ) k k ! ( n + k ) ! ,
18: 10.65 Power Series
10.65.3 ker n x = 1 2 ( 1 2 x ) n k = 0 n 1 ( n k 1 ) ! k ! cos ( 3 4 n π + 1 2 k π ) ( 1 4 x 2 ) k ln ( 1 2 x ) ber n x + 1 4 π bei n x + 1 2 ( 1 2 x ) n k = 0 ψ ( k + 1 ) + ψ ( n + k + 1 ) k ! ( n + k ) ! cos ( 3 4 n π + 1 2 k π ) ( 1 4 x 2 ) k ,
10.65.4 kei n x = 1 2 ( 1 2 x ) n k = 0 n 1 ( n k 1 ) ! k ! sin ( 3 4 n π + 1 2 k π ) ( 1 4 x 2 ) k ln ( 1 2 x ) bei n x 1 4 π ber n x + 1 2 ( 1 2 x ) n k = 0 ψ ( k + 1 ) + ψ ( n + k + 1 ) k ! ( n + k ) ! sin ( 3 4 n π + 1 2 k π ) ( 1 4 x 2 ) k .
19: 5.9 Integral Representations
5.9.12 ψ ( z ) = 0 ( e t t e z t 1 e t ) d t ,
5.9.13 ψ ( z ) = ln z + 0 ( 1 t 1 1 e t ) e t z d t ,
5.9.14 ψ ( z ) = 0 ( e t 1 ( 1 + t ) z ) d t t ,
5.9.15 ψ ( z ) = ln z 1 2 z 2 0 t d t ( t 2 + z 2 ) ( e 2 π t 1 ) .
5.9.17 ψ ( z + 1 ) = γ + 1 2 π i c i c + i π z s 1 sin ( π s ) ζ ( s ) d s ,
20: 25.5 Integral Representations
In (25.5.15)–(25.5.19), 0 < s < 1 , ψ ( x ) is the digamma function, and γ is Euler’s constant (§5.2). …
25.5.15 ζ ( s ) = 1 s 1 + sin ( π s ) π 0 ( ln ( 1 + x ) ψ ( 1 + x ) ) x s d x ,
25.5.17 ζ ( 1 + s ) = sin ( π s ) π 0 ( γ + ψ ( 1 + x ) ) x s 1 d x ,
25.5.18 ζ ( 1 + s ) = sin ( π s ) π s 0 ψ ( 1 + x ) x s d x ,
25.5.19 ζ ( m + s ) = ( 1 ) m 1 Γ ( s ) sin ( π s ) π Γ ( m + s ) 0 ψ ( m ) ( 1 + x ) x s d x , m = 1 , 2 , 3 , .