About the Project

delta wing equation

AdvancedHelp

(0.002 seconds)

11—20 of 509 matching pages

11: 31.1 Special Notation
x , y real variables.
q , α , β , γ , δ , ϵ , ν complex parameters.
The main functions treated in this chapter are H ( a , q ; α , β , γ , δ ; z ) , ( s 1 , s 2 ) 𝐻𝑓 m ( a , q m ; α , β , γ , δ ; z ) , ( s 1 , s 2 ) 𝐻𝑓 m ν ( a , q m ; α , β , γ , δ ; z ) , and the polynomial 𝐻𝑝 n , m ( a , q n , m ; n , β , γ , δ ; z ) . …Sometimes the parameters are suppressed.
12: 31.16 Mathematical Applications
§31.16 Mathematical Applications
§31.16(i) Uniformization Problem for Heun’s Equation
 thesis “Inversion problem for a second-order linear differential equation with four singular points”. It describes the monodromy group of Heun’s equation for specific values of the accessory parameter. …
13: 31.12 Confluent Forms of Heun’s Equation
Confluent Heun Equation
Doubly-Confluent Heun Equation
Biconfluent Heun Equation
Triconfluent Heun Equation
14: 31.3 Basic Solutions
H ( a , q ; α , β , γ , δ ; z ) denotes the solution of (31.2.1) that corresponds to the exponent 0 at z = 0 and assumes the value 1 there. …
§31.3(ii) Fuchs–Frobenius Solutions at Other Singularities
Solutions of (31.2.1) corresponding to the exponents 0 and 1 δ at z = 1 are respectively, …
§31.3(iii) Equivalent Expressions
For example, H ( a , q ; α , β , γ , δ ; z ) is equal to …
15: 13.27 Mathematical Applications
13.27.1 g = ( 1 α β 0 γ δ 0 0 1 ) ,
where α , β , γ , δ are real numbers, and γ > 0 . … For applications of Whittaker functions to the uniform asymptotic theory of differential equations with a coalescing turning point and simple pole see §§2.8(vi) and 18.15(i).
16: 31.10 Integral Equations and Representations
§31.10 Integral Equations and Representations
For integral equations satisfied by the Heun polynomial 𝐻𝑝 n , m ( z ) we have σ = 1 2 δ j , j = 0 , 1 , , n . … Then the integral equation (31.10.1) is satisfied by w ( z ) = w m ( z ) and W ( z ) = κ m w m ( z ) , where w m ( z ) = ( 0 , 1 ) 𝐻𝑓 m ( a , q m ; α , β , γ , δ ; z ) and κ m is the corresponding eigenvalue. … leads to the kernel equation
17: 18.26 Wilson Class: Continued
18.26.4_1 R n ( y ( y + γ + δ + 1 ) ; γ , δ , N ) = Q y ( n ; γ , δ , N ) ,
18.26.4_2 R n ( y ( y + γ + δ + 1 ) ; α , β , γ , δ ) = R y ( n ( n + α + β + 1 ) ; γ , δ , α , β ) .
For comments on the use of the forward-difference operator Δ x , the backward-difference operator x , and the central-difference operator δ x , see §18.2(ii). …
18.26.16 Δ y ( R n ( y ( y + γ + δ + 1 ) ; α , β , γ , δ ) ) Δ y ( y ( y + γ + δ + 1 ) ) = n ( n + α + β + 1 ) ( α + 1 ) ( β + δ + 1 ) ( γ + 1 ) R n 1 ( y ( y + γ + δ + 2 ) ; α + 1 , β + 1 , γ + 1 , δ ) .
18.26.17 Δ y ( R n ( y ( y + γ + δ + 1 ) ; γ , δ , N ) ) Δ y ( y ( y + γ + δ + 1 ) ) = n ( γ + 1 ) N R n 1 ( y ( y + γ + δ + 2 ) ; γ + 1 , δ , N 1 ) .
18: 19.11 Addition Theorems
Δ ( θ ) = 1 k 2 sin 2 θ .
δ = α 2 ( 1 α 2 ) ( α 2 k 2 ) .
19.11.6_5 R C ( γ δ , γ ) = 1 δ arctan ( δ sin θ sin ϕ sin ψ α 2 1 α 2 cos θ cos ϕ cos ψ ) .
δ = α 2 ( 1 α 2 ) ( α 2 k 2 ) .
If ϕ = θ in §19.11(i) and Δ ( θ ) is again defined by (19.11.3), then …
19: 28.30 Expansions in Series of Eigenfunctions
§28.30 Expansions in Series of Eigenfunctions
§28.30(i) Real Variable
28.30.1 w m ′′ + ( λ ^ m + Q ( x ) ) w m = 0 ,
28.30.3 f ( x ) = m = 0 f m w m ( x ) ,
20: 31.6 Path-Multiplicative Solutions
§31.6 Path-Multiplicative Solutions
A further extension of the notation (31.4.1) and (31.4.3) is given by