About the Project

cyclotomic fields

AdvancedHelp

(0.001 seconds)

21—30 of 44 matching pages

21: Frank W. J. Olver
Olver was an applied mathematician of world renown, one of the most widely recognized contemporary scholars in the field of special functions. … According to DLMF Project Lead Daniel Lozier, “Olver’s encyclopedic knowledge of the field, his clear vision for mathematical exposition, his keen sense of the needs of practitioners, and his unfailing attention to detail were key to the success of that project. …
22: Bibliography F
  • J. L. Fields and Y. L. Luke (1963a) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. II. J. Math. Anal. Appl. 7 (3), pp. 440–451.
  • J. L. Fields and Y. L. Luke (1963b) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. J. Math. Anal. Appl. 6 (3), pp. 394–403.
  • J. L. Fields and J. Wimp (1961) Expansions of hypergeometric functions in hypergeometric functions. Math. Comp. 15 (76), pp. 390–395.
  • J. L. Fields (1965) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. III. J. Math. Anal. Appl. 12 (3), pp. 593–601.
  • J. L. Fields (1966) A note on the asymptotic expansion of a ratio of gamma functions. Proc. Edinburgh Math. Soc. (2) 15, pp. 43–45.
  • 23: 19.33 Triaxial Ellipsoids
    Let a homogeneous magnetic ellipsoid with semiaxes a , b , c , volume V = 4 π a b c / 3 , and susceptibility χ be placed in a previously uniform magnetic field H parallel to the principal axis with semiaxis c . The external field and the induced magnetization together produce a uniform field inside the ellipsoid with strength H / ( 1 + L c χ ) , where L c is the demagnetizing factor, given in cgs units by … The same result holds for a homogeneous dielectric ellipsoid in an electric field. …
    24: 23.21 Physical Applications
    §23.21 Physical Applications
  • Quantum field theory. See Witten (1987).

  • 25: Richard A. Askey
    Askey was presented a Lifetime Achievement Award in Recognition and Appreciation for his Outstanding Work and Leadership in the Field of Special Functions at the International Symposium on Orthogonal Polynomials, Special Functions and Applications in Hagenberg, Austria on July 24, 2019. …
    26: Bibliography P
  • R. B. Paris and W. N.-C. Sy (1983) Influence of equilibrium shear flow along the magnetic field on the resistive tearing instability. Phys. Fluids 26 (10), pp. 2966–2975.
  • G. Parisi (1988) Statistical Field Theory. Addison-Wesley, Reading, MA.
  • T. Pearcey (1946) The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic. Philos. Mag. (7) 37, pp. 311–317.
  • S. Pokorski (1987) Gauge Field Theories. Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge.
  • 27: 9.16 Physical Applications
    An example from quantum mechanics is given in Landau and Lifshitz (1965), in which the exact solution of the Schrödinger equation for the motion of a particle in a homogeneous external field is expressed in terms of Ai ( x ) . …
    28: 24.16 Generalizations
    In no particular order, other generalizations include: Bernoulli numbers and polynomials with arbitrary complex index (Butzer et al. (1992)); Euler numbers and polynomials with arbitrary complex index (Butzer et al. (1994)); q-analogs (Carlitz (1954a), Andrews and Foata (1980)); conjugate Bernoulli and Euler polynomials (Hauss (1997, 1998)); Bernoulli–Hurwitz numbers (Katz (1975)); poly-Bernoulli numbers (Kaneko (1997)); Universal Bernoulli numbers (Clarke (1989)); p -adic integer order Bernoulli numbers (Adelberg (1996)); p -adic q -Bernoulli numbers (Kim and Kim (1999)); periodic Bernoulli numbers (Berndt (1975b)); cotangent numbers (Girstmair (1990b)); Bernoulli–Carlitz numbers (Goss (1978)); Bernoulli–Padé numbers (Dilcher (2002)); Bernoulli numbers belonging to periodic functions (Urbanowicz (1988)); cyclotomic Bernoulli numbers (Girstmair (1990a)); modified Bernoulli numbers (Zagier (1998)); higher-order Bernoulli and Euler polynomials with multiple parameters (Erdélyi et al. (1953a, §§1.13.1, 1.14.1)).
    29: 16.10 Expansions in Series of F q p Functions
    The following expansion, with appropriate conditions and together with similar results, is given in Fields and Wimp (1961): …
    30: 33.22 Particle Scattering and Atomic and Molecular Spectra
    §33.22(iv) Klein–Gordon and Dirac Equations
    The relativistic motion of spinless particles in a Coulomb field, as encountered in pionic atoms and pion-nucleon scattering (Backenstoss (1970)) is described by a Klein–Gordon equation equivalent to (33.2.1); see Barnett (1981a). The motion of a relativistic electron in a Coulomb field, which arises in the theory of the electronic structure of heavy elements (Johnson (2007)), is described by a Dirac equation. …