About the Project

critical%20points

AdvancedHelp

(0.001 seconds)

21—30 of 229 matching pages

21: 31.15 Stieltjes Polynomials
The system (31.15.2) determines the z k as the points of equilibrium of n movable (interacting) particles with unit charges in a field of N particles with the charges γ j / 2 fixed at a j . … The zeros z k , k = 1 , 2 , , n , of the Stieltjes polynomial S ( z ) are the critical points of the function G , that is, points at which G / ζ k = 0 , k = 1 , 2 , , n , where …
22: 26.13 Permutations: Cycle Notation
26.13.2 [ 1 2 3 4 5 6 7 8 3 5 2 4 7 8 1 6 ]
Cycles of length one are fixed points. … An element of 𝔖 n with a 1 fixed points, a 2 cycles of length 2 , , a n cycles of length n , where n = a 1 + 2 a 2 + + n a n , is said to have cycle type ( a 1 , a 2 , , a n ) . … A derangement is a permutation with no fixed points. The derangement number, d ( n ) , is the number of elements of 𝔖 n with no fixed points: …
23: 9.15 Mathematical Applications
Airy functions play an indispensable role in the construction of uniform asymptotic expansions for contour integrals with coalescing saddle points, and for solutions of linear second-order ordinary differential equations with a simple turning point. …
24: 3.4 Differentiation
Two-Point Formula
Three-Point Formula
Four-Point Formula
Five-Point Formula
Six-Point Formula
25: Preface
The validators played a critical role in the project, one that was absent in its 1964 counterpart: to provide critical, independent reviews during the development of each chapter, with attention to accuracy and appropriateness of subject coverage. …
26: Bibliography O
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • F. W. J. Olver (1964b) Error bounds for asymptotic expansions in turning-point problems. J. Soc. Indust. Appl. Math. 12 (1), pp. 200–214.
  • F. W. J. Olver (1975a) Second-order linear differential equations with two turning points. Philos. Trans. Roy. Soc. London Ser. A 278, pp. 137–174.
  • F. W. J. Olver (1976) Improved error bounds for second-order differential equations with two turning points. J. Res. Nat. Bur. Standards Sect. B 80B (4), pp. 437–440.
  • F. W. J. Olver (1977c) Second-order differential equations with fractional transition points. Trans. Amer. Math. Soc. 226, pp. 227–241.
  • 27: 28.35 Tables
  • Ince (1932) includes eigenvalues a n , b n , and Fourier coefficients for n = 0 or 1 ( 1 ) 6 , q = 0 ( 1 ) 10 ( 2 ) 20 ( 4 ) 40 ; 7D. Also ce n ( x , q ) , se n ( x , q ) for q = 0 ( 1 ) 10 , x = 1 ( 1 ) 90 , corresponding to the eigenvalues in the tables; 5D. Notation: a n = 𝑏𝑒 n 2 q , b n = 𝑏𝑜 n 2 q .

  • Kirkpatrick (1960) contains tables of the modified functions Ce n ( x , q ) , Se n + 1 ( x , q ) for n = 0 ( 1 ) 5 , q = 1 ( 1 ) 20 , x = 0.1 ( .1 ) 1 ; 4D or 5D.

  • National Bureau of Standards (1967) includes the eigenvalues a n ( q ) , b n ( q ) for n = 0 ( 1 ) 3 with q = 0 ( .2 ) 20 ( .5 ) 37 ( 1 ) 100 , and n = 4 ( 1 ) 15 with q = 0 ( 2 ) 100 ; Fourier coefficients for ce n ( x , q ) and se n ( x , q ) for n = 0 ( 1 ) 15 , n = 1 ( 1 ) 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ( q ) , f e , n ( q ) for n = 0 ( 1 ) 15 with q = 0 ( .5  to  10 ) 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ( q ) , b n + 1 ( q ) for n = 0 ( 1 ) 4 , q = 0 ( 1 ) 50 ; n = 0 ( 1 ) 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ( 50 ) 200 . Fourier coefficients for ce n ( x , 10 ) , se n + 1 ( x , 10 ) , n = 0 ( 1 ) 7 . Mathieu functions ce n ( x , 10 ) , se n + 1 ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , x = 0 ( 5 ) 90 . Modified Mathieu functions Mc n ( j ) ( x , 10 ) , Ms n + 1 ( j ) ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , j = 1 , 2 , x = 0 ( .2 ) 4 . Precision is mostly 9S.

  • Blanch and Clemm (1969) includes eigenvalues a n ( q ) , b n ( q ) for q = ρ e i ϕ , ρ = 0 ( .5 ) 25 , ϕ = 5 ( 5 ) 90 , n = 0 ( 1 ) 15 ; 4D. Also a n ( q ) and b n ( q ) for q = i ρ , ρ = 0 ( .5 ) 100 , n = 0 ( 2 ) 14 and n = 2 ( 2 ) 16 , respectively; 8D. Double points for n = 0 ( 1 ) 15 ; 8D. Graphs are included.

  • 28: 18.40 Methods of Computation
    Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . … The quadrature points and weights can be put to a more direct and efficient use. … This allows Stieltjes–Perron inversion for the w ( x i , N ) , given the quadrature weights and points. …
    See accompanying text
    Figure 18.40.2: Derivative Rule inversions for w RCP ( x ) carried out via Lagrange and PWCF interpolations. Shown are the absolute errors of approximation (18.40.8) at the points x i , N , i = 1 , 2 , , N for N = 40 . For the derivative rule Lagrange interpolation (red points) gives 15 digits in the central region, while PWCF interpolation (blue points) gives 25 . Magnify
    29: 25.12 Polylogarithms
    In the complex plane Li 2 ( z ) has a branch point at z = 1 . …
    See accompanying text
    Figure 25.12.1: Dilogarithm function Li 2 ( x ) , 20 x < 1 . Magnify
    See accompanying text
    Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
    30: Bibliography I
  • IEEE (2008) IEEE Standard for Floating-Point Arithmetic. The Institute of Electrical and Electronics Engineers, Inc..
  • IEEE (2019) IEEE International Standard for Information Technology—Microprocessor Systems—Floating-Point arithmetic: IEEE Std 754-2019. The Institute of Electrical and Electronics Engineers, Inc..
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.