About the Project

continuous%20function

AdvancedHelp

(0.003 seconds)

6 matching pages

1: Bibliography F
  • R. H. Farrell (1985) Multivariate Calculation. Use of the Continuous Groups. Springer Series in Statistics, Springer-Verlag, New York.
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • A. S. Fokas, B. Grammaticos, and A. Ramani (1993) From continuous to discrete Painlevé equations. J. Math. Anal. Appl. 180 (2), pp. 342–360.
  • A. S. Fokas, A. R. Its, and X. Zhou (1992) Continuous and Discrete Painlevé Equations. In Painlevé Transcendents: Their Asymptotics and Physical Applications, D. Levi and P. Winternitz (Eds.), NATO Adv. Sci. Inst. Ser. B Phys., Vol. 278, pp. 33–47.
  • 2: 9.9 Zeros
    §9.9(ii) Relation to Modulus and Phase
    §9.9(iii) Derivatives With Respect to k
    If k is regarded as a continuous variable, then …
    §9.9(iv) Asymptotic Expansions
    §9.9(v) Tables
    3: 6.16 Mathematical Applications
    6.16.1 sin x + 1 3 sin ( 3 x ) + 1 5 sin ( 5 x ) + = { 1 4 π , 0 < x < π , 0 , x = 0 , 1 4 π , π < x < 0 .
    It occurs with Fourier-series expansions of all piecewise continuous functions. … …
    6.16.5 li ( x ) π ( x ) = O ( x ln x ) , x ,
    See accompanying text
    Figure 6.16.2: The logarithmic integral li ( x ) , together with vertical bars indicating the value of π ( x ) for x = 10 , 20 , , 1000 . Magnify
    4: 18.40 Methods of Computation
    Given the power moments, μ n = a b x n d μ ( x ) , n = 0 , 1 , 2 , , can these be used to find a unique μ ( x ) , a non-decreasing, real, function of x , in the case that the moment problem is determined? Should a unique solution not exist the moment problem is then indeterminant. … In what follows we consider only the simple, illustrative, case that μ ( x ) is continuously differentiable so that d μ ( x ) = w ( x ) d x , with w ( x ) real, positive, and continuous on a real interval [ a , b ] . The strategy will be to: 1) use the moments to determine the recursion coefficients α n , β n of equations (18.2.11_5) and (18.2.11_8); then, 2) to construct the quadrature abscissas x i and weights (or Christoffel numbers) w i from the J-matrix of §3.5(vi), equations (3.5.31) and(3.5.32). … Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . … H ( x ) being the Heaviside step-function, see (1.16.13). … The example chosen is inversion from the α n , β n for the weight function for the repulsive Coulomb–Pollaczek, RCP, polynomials of (18.39.50). …
    5: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley and J. Nayler (1935) A short table of the functions Ki n ( x ) , from n = 1 to n = 16 . Phil. Mag. Series 7 20, pp. 343–347.
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • 6: 8.17 Incomplete Beta Functions
    §8.17 Incomplete Beta Functions
    §8.17(ii) Hypergeometric Representations
    §8.17(iii) Integral Representation
    where x < c < 1 and the branches of s a and ( 1 s ) b are continuous on the path and assume their principal values when s = c . …
    §8.17(vi) Sums