About the Project

constant term

AdvancedHelp

(0.003 seconds)

21—30 of 140 matching pages

21: 11.6 Asymptotic Expansions
§11.6(i) Large | z | , Fixed ν
where δ is an arbitrary small positive constant. If the series on the right-hand side of (11.6.1) is truncated after m ( 0 ) terms, then the remainder term R m ( z ) is O ( z ν 2 m 1 ) . … For re-expansions of the remainder terms in (11.6.1) and (11.6.2), see Dingle (1973, p. 445). … where γ is Euler’s constant5.2(ii)). …
22: 18.18 Sums
See Andrews et al. (1999, Lemma 7.1.1) for the more general expansion of P n ( γ , δ ) ( x ) in terms of P n ( α , β ) ( x ) . …
23: 14.23 Values on the Cut
In terms of the hypergeometric function 𝐅 14.3(i))
14.23.3 𝑸 ν μ ( x ± i 0 ) = e ν π i / 2 π 3 / 2 ( 1 x 2 ) μ / 2 2 ν + 1 ( x 𝐅 ( 1 2 μ 1 2 ν + 1 2 , 1 2 ν + 1 2 μ + 1 ; 3 2 ; x 2 ) Γ ( 1 2 ν 1 2 μ + 1 2 ) Γ ( 1 2 ν + 1 2 μ + 1 2 ) i 𝐅 ( 1 2 μ 1 2 ν , 1 2 ν + 1 2 μ + 1 2 ; 1 2 ; x 2 ) Γ ( 1 2 ν 1 2 μ + 1 ) Γ ( 1 2 ν + 1 2 μ + 1 ) ) .
14.23.5 𝖰 ν μ ( x ) = 1 2 Γ ( ν + μ + 1 ) ( e μ π i / 2 𝑸 ν μ ( x + i 0 ) + e μ π i / 2 𝑸 ν μ ( x i 0 ) ) ,
14.23.6 𝖰 ν μ ( x ) = e μ π i / 2 Γ ( ν + μ + 1 ) 𝑸 ν μ ( x ± i 0 ) ± 1 2 π i e ± μ π i / 2 P ν μ ( x ± i 0 ) .
24: 32.10 Special Function Solutions
P II  has solutions expressible in terms of Airy functions (§9.2) iff … P III  then has solutions expressible in terms of Bessel functions (§10.2) iff … P IV  has solutions expressible in terms of parabolic cylinder functions (§12.2) iff either … P V  then has solutions expressible in terms of Whittaker functions (§13.14(i)), iff … P VI  has solutions expressible in terms of hypergeometric functions (§15.2(i)) iff …
25: 31.10 Integral Equations and Representations
Fuchs–Frobenius solutions W m ( z ) = κ ~ m z α H ( 1 / a , q m ; α , α γ + 1 , α β + 1 , δ ; 1 / z ) are represented in terms of Heun functions w m ( z ) = ( 0 , 1 ) 𝐻𝑓 m ( a , q m ; α , β , γ , δ ; z ) by (31.10.1) with W ( z ) = W m ( z ) , w ( z ) = w m ( z ) , and with kernel chosen from …
26: 8.20 Asymptotic Expansions of E p ( z )
8.20.3 E p ( z ) ± 2 π i Γ ( p ) e p π i z p 1 + e z z k = 0 ( 1 ) k ( p ) k z k , 1 2 π + δ ± ph z 7 2 π δ ,
δ again denoting an arbitrary small positive constant. Where the sectors of validity of (8.20.2) and (8.20.3) overlap the contribution of the first term on the right-hand side of (8.20.3) is exponentially small compared to the other contribution; compare §2.11(ii). …
27: 10.46 Generalized and Incomplete Bessel Functions; Mittag-Leffler Function
10.46.1 ϕ ( ρ , β ; z ) = k = 0 z k k ! Γ ( ρ k + β ) , ρ > 1 .
The Laplace transform of ϕ ( ρ , β ; z ) can be expressed in terms of the Mittag-Leffler function:
10.46.3 E a , b ( z ) = k = 0 z k Γ ( a k + b ) , a > 0 .
28: 25.8 Sums
25.8.3 k = 0 ( s ) k ζ ( s + k ) k ! 2 s + k = ( 1 2 s ) ζ ( s ) , s 1 .
29: 8.22 Mathematical Applications
8.22.1 F p ( z ) = Γ ( p ) 2 π z 1 p E p ( z ) = Γ ( p ) 2 π Γ ( 1 p , z ) ,
plays a fundamental role in re-expansions of remainder terms in asymptotic expansions, including exponentially-improved expansions and a smooth interpretation of the Stokes phenomenon. … The function Γ ( a , z ) , with | ph a | 1 2 π and ph z = 1 2 π , has an intimate connection with the Riemann zeta function ζ ( s ) 25.2(i)) on the critical line s = 1 2 . …
8.22.2 ζ x ( s ) = 1 Γ ( s ) 0 x t s 1 e t 1 d t , s > 1 ,
30: 25.12 Polylogarithms
25.12.11 Li s ( z ) z Γ ( s ) 0 x s 1 e x z d x ,
25.12.14 F s ( x ) = 1 Γ ( s + 1 ) 0 t s e t x + 1 d t , s > 1 ,
25.12.15 G s ( x ) = 1 Γ ( s + 1 ) 0 t s e t x 1 d t , s > 1 , x < 0 ; or s > 0 , x 0 ,
Sometimes the factor 1 / Γ ( s + 1 ) is omitted. … In terms of polylogarithms …