About the Project

confluent hypergeometric functions

AdvancedHelp

(0.017 seconds)

21—30 of 95 matching pages

21: 18.11 Relations to Other Functions
Laguerre
18.11.2 L n ( α ) ( x ) = ( α + 1 ) n n ! M ( n , α + 1 , x ) = ( 1 ) n n ! U ( n , α + 1 , x ) = ( α + 1 ) n n ! x 1 2 ( α + 1 ) e 1 2 x M n + 1 2 ( α + 1 ) , 1 2 α ( x ) = ( 1 ) n n ! x 1 2 ( α + 1 ) e 1 2 x W n + 1 2 ( α + 1 ) , 1 2 α ( x ) .
For the confluent hypergeometric functions M ( a , b , x ) and U ( a , b , x ) , see §13.2(i), and for the Whittaker functions M κ , μ ( x ) and W κ , μ ( x ) see §13.14(i).
Hermite
18.11.3 H n ( x ) = 2 n U ( 1 2 n , 1 2 , x 2 ) = 2 n x U ( 1 2 n + 1 2 , 3 2 , x 2 ) = 2 1 2 n e 1 2 x 2 U ( n 1 2 , 2 1 2 x ) ,
22: 13.11 Series
13.11.1 M ( a , b , z ) = Γ ( a 1 2 ) e 1 2 z ( 1 4 z ) 1 2 a s = 0 ( 2 a 1 ) s ( 2 a b ) s ( b ) s s ! ( a 1 2 + s ) I a 1 2 + s ( 1 2 z ) , a + 1 2 , b 0 , 1 , 2 , ,
13.11.2 M ( a , b , z ) = Γ ( b a 1 2 ) e 1 2 z ( 1 4 z ) a b + 1 2 s = 0 ( 1 ) s ( 2 b 2 a 1 ) s ( b 2 a ) s ( b a 1 2 + s ) ( b ) s s ! I b a 1 2 + s ( 1 2 z ) , b a + 1 2 , b 0 , 1 , 2 , .
13.11.3 𝐌 ( a , b , z ) = e 1 2 z s = 0 A s ( b 2 a ) 1 2 ( 1 b s ) ( 1 2 z ) 1 2 ( 1 b + s ) J b 1 + s ( 2 z ( b 2 a ) ) ,
23: 13.8 Asymptotic Approximations for Large Parameters
13.8.2 M ( a , b , z ) Γ ( b ) Γ ( b a ) s = 0 ( a ) s q s ( z , a ) b s a ,
13.8.6 M ( a , b , b ) = π ( b 2 ) 1 2 a ( 1 Γ ( 1 2 ( a + 1 ) ) + ( a + 1 ) 8 / b 3 Γ ( 1 2 a ) + O ( 1 b ) ) ,
13.8.7 U ( a , b , b ) = π ( 2 b ) 1 2 a ( 1 Γ ( 1 2 ( a + 1 ) ) ( a + 1 ) 8 / b 3 Γ ( 1 2 a ) + O ( 1 b ) ) .
13.8.13 𝐌 ( a , b , z ) ( z / a ) ( 1 b ) / 2 e z / 2 Γ ( 1 + a ) Γ ( a + b ) ( J b 1 ( 2 a z ) s = 0 p s ( z ) ( a ) s z / a J b ( 2 a z ) s = 0 q s ( z ) ( a ) s ) ,
13.8.18 U ( a , b + 1 , z ) = z b e ( 1 ν ) z Γ ( b ) Γ ( a ) ( 1 + ν z ( 1 ν ) ( 2 ν z ) 2 a + O ( 1 min ( a 2 , b 2 ) ) ) , z > 0 ,
24: 7.11 Relations to Other Functions
Confluent Hypergeometric Functions
7.11.4 erf z = 2 z π M ( 1 2 , 3 2 , z 2 ) = 2 z π e z 2 M ( 1 , 3 2 , z 2 ) ,
7.11.5 erfc z = 1 π e z 2 U ( 1 2 , 1 2 , z 2 ) = z π e z 2 U ( 1 , 3 2 , z 2 ) .
7.11.6 C ( z ) + i S ( z ) = z M ( 1 2 , 3 2 , 1 2 π i z 2 ) = z e π i z 2 / 2 M ( 1 , 3 2 , 1 2 π i z 2 ) .
25: 16.25 Methods of Computation
They are similar to those described for confluent hypergeometric functions, and hypergeometric functions in §§13.29 and 15.19. …
26: Adri B. Olde Daalhuis
27: 6.20 Approximations
  • Luke (1969b, p. 25) gives a Chebyshev expansion near infinity for the confluent hypergeometric U -function13.2(i)) from which Chebyshev expansions near infinity for E 1 ( z ) , f ( z ) , and g ( z ) follow by using (6.11.2) and (6.11.3). Luke also includes a recursion scheme for computing the coefficients in the expansions of the U functions. If | ph z | < π the scheme can be used in backward direction.

  • 28: 13.3 Recurrence Relations and Derivatives
    13.3.7 U ( a 1 , b , z ) + ( b 2 a z ) U ( a , b , z ) + a ( a b + 1 ) U ( a + 1 , b , z ) = 0 ,
    13.3.8 ( b a 1 ) U ( a , b 1 , z ) + ( 1 b z ) U ( a , b , z ) + z U ( a , b + 1 , z ) = 0 ,
    13.3.9 U ( a , b , z ) a U ( a + 1 , b , z ) U ( a , b 1 , z ) = 0 ,
    13.3.10 ( b a ) U ( a , b , z ) + U ( a 1 , b , z ) z U ( a , b + 1 , z ) = 0 ,
    13.3.11 ( a + z ) U ( a , b , z ) z U ( a , b + 1 , z ) + a ( b a 1 ) U ( a + 1 , b , z ) = 0 ,
    29: 13.26 Addition and Multiplication Theorems
    §13.26(i) Addition Theorems for M κ , μ ( z )
    The function M κ , μ ( x + y ) has the following expansions: …
    §13.26(ii) Addition Theorems for W κ , μ ( z )
    The function W κ , μ ( x + y ) has the following expansions: …
    §13.26(iii) Multiplication Theorems for M κ , μ ( z ) and W κ , μ ( z )
    30: 33.2 Definitions and Basic Properties
    The function F ( η , ρ ) is recessive (§2.7(iii)) at ρ = 0 , and is defined by
    33.2.3 F ( η , ρ ) = C ( η ) 2 1 ( i ) + 1 M ± i η , + 1 2 ( ± 2 i ρ ) ,
    The functions H ± ( η , ρ ) are defined by …
    33.2.8 H ± ( η , ρ ) = e ± i θ ( η , ρ ) ( 2 i ρ ) + 1 ± i η U ( + 1 ± i η , 2 + 2 , 2 i ρ ) ,