About the Project

complex%20orthogonal%20polynomials

AdvancedHelp

(0.004 seconds)

11—18 of 18 matching pages

11: Bibliography C
  • CAOP (website) Work Group of Computational Mathematics, University of Kassel, Germany.
  • Y. Chen and M. E. H. Ismail (1998) Asymptotics of the largest zeros of some orthogonal polynomials. J. Phys. A 31 (25), pp. 5525–5544.
  • T. S. Chihara (1978) An Introduction to Orthogonal Polynomials. Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York.
  • T. S. Chihara and M. E. H. Ismail (1993) Extremal measures for a system of orthogonal polynomials. Constr. Approx. 9, pp. 111–119.
  • M. S. Costa, E. Godoy, R. L. Lamblém, and A. Sri Ranga (2012) Basic hypergeometric functions and orthogonal Laurent polynomials. Proc. Amer. Math. Soc. 140 (6), pp. 2075–2089.
  • 12: Bibliography P
  • A. M. Parkhurst and A. T. James (1974) Zonal Polynomials of Order 1 Through 12 . In Selected Tables in Mathematical Statistics, H. L. Harter and D. B. Owen (Eds.), Vol. 2, pp. 199–388.
  • P. I. Pastro (1985) Orthogonal polynomials and some q -beta integrals of Ramanujan. J. Math. Anal. Appl. 112 (2), pp. 517–540.
  • J. Patera and P. Winternitz (1973) A new basis for the representation of the rotation group. Lamé and Heun polynomials. J. Mathematical Phys. 14 (8), pp. 1130–1139.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • R. Piessens and M. Branders (1972) Chebyshev polynomial expansions of the Riemann zeta function. Math. Comp. 26 (120), pp. G1–G5.
  • 13: Bibliography M
  • I. G. Macdonald (1998) Symmetric Functions and Orthogonal Polynomials. University Lecture Series, Vol. 12, American Mathematical Society, Providence, RI.
  • I. G. Macdonald (2000) Orthogonal polynomials associated with root systems. Sém. Lothar. Combin. 45, pp. Art. B45a, 40 pp. (electronic).
  • I. G. Macdonald (2003) Affine Hecke Algebras and Orthogonal Polynomials. Cambridge Tracts in Mathematics, Vol. 157, Cambridge University Press, Cambridge.
  • R. Milson (2017) Exceptional orthogonal polynomials.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 14: Bibliography R
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • M. Rahman (2001) The Associated Classical Orthogonal Polynomials. In Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, pp. 255–279.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • W. P. Reinhardt (2021a) Erratum to:Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (4), pp. 91.
  • W. P. Reinhardt (2021b) Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (3), pp. 56–64.
  • 15: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • P. G. Nevai (1979) Orthogonal polynomials. Mem. Amer. Math. Soc. 18 (213), pp. v+185 pp..
  • P. Nevai (1986) Géza Freud, orthogonal polynomials and Christoffel functions. A case study. J. Approx. Theory 48 (1), pp. 3–167.
  • M. Noumi and J. V. Stokman (2004) Askey-Wilson polynomials: an affine Hecke algebra approach. In Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, pp. 111–144.
  • 16: Bibliography L
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. A. Leonard (1982) Orthogonal polynomials, duality and association schemes. SIAM J. Math. Anal. 13 (4), pp. 656–663.
  • E. Levin and D. S. Lubinsky (2001) Orthogonal Polynomials for Exponential Weights. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 4, Springer-Verlag, New York.
  • E. Levin and D. Lubinsky (2005) Orthogonal polynomials for exponential weights x 2 ρ e 2 Q ( x ) on [ 0 , d ) . J. Approx. Theory 134 (2), pp. 199–256.
  • J. L. López and N. M. Temme (1999a) Approximation of orthogonal polynomials in terms of Hermite polynomials. Methods Appl. Anal. 6 (2), pp. 131–146.
  • 17: 3.8 Nonlinear Equations
    For the computation of zeros of orthogonal polynomials as eigenvalues of finite tridiagonal matrices (§3.5(vi)), see Gil et al. (2007a, pp. 205–207). … The polynomial
    Example. Wilkinson’s Polynomial
    Consider x = 20 and j = 19 . We have p ( 20 ) = 19 ! and a 19 = 1 + 2 + + 20 = 210 . …
    18: 18.39 Applications in the Physical Sciences
    Kuijlaars and Milson (2015, §1) refer to these, in this case complex zeros, as exceptional, as opposed to regular, zeros of the EOP’s, these latter belonging to the (real) orthogonality integration range. … Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. …
    The Coulomb–Pollaczek Polynomials
    These cases correspond to the two distinct orthogonality conditions of (18.35.6) and (18.35.6_3). … For interpretations of zeros of classical OP’s as equilibrium positions of charges in electrostatic problems (assuming logarithmic interaction), see Ismail (2000a, b).