About the Project

complementary

AdvancedHelp

(0.001 seconds)

11—20 of 100 matching pages

11: 7.17 Inverse Error Functions
The inverses of the functions x = erf y , x = erfc y , y , are denoted by …
y = inverfc x ,
§7.17(iii) Asymptotic Expansion of inverfc x for Small x
7.17.3 inverfc x u 1 / 2 + a 2 u 3 / 2 + a 3 u 5 / 2 + a 4 u 7 / 2 + ,
12: 22.5 Special Values
Table 22.5.1 gives the value of each of the 12 Jacobian elliptic functions, together with its z -derivative (or at a pole, the residue), for values of z that are integer multiples of K , i K . For example, at z = K + i K , sn ( z , k ) = 1 / k , d sn ( z , k ) / d z = 0 . … If k 0 + , then K π / 2 and K ; if k 1 , then K and K π / 2 . … Expansions for K , K as k 0 or 1 are given in §§19.5, 19.12. For values of K , K when k 2 = 1 2 (lemniscatic case) see §23.5(iii), and for k 2 = e i π / 3 (equianharmonic case) see §23.5(v). …
13: 22.1 Special Notation
x , y real variables.
k complementary modulus, k 2 + k 2 = 1 . If k [ 0 , 1 ] , then k [ 0 , 1 ] .
K , K K ( k ) , K ( k ) = K ( k ) (complete elliptic integrals of the first kind (§19.2(ii))).
τ i K / K .
14: 29.16 Asymptotic Expansions
The approximations for Lamé polynomials hold uniformly on the rectangle 0 z K , 0 z K , when n k and n k assume large real values. …
15: 7.24 Approximations
  • Hastings (1955) gives several minimax polynomial and rational approximations for erf x , erfc x and the auxiliary functions f ( x ) and g ( x ) .

  • Cody (1969) provides minimax rational approximations for erf x and erfc x . The maximum relative precision is about 20S.

  • Schonfelder (1978) gives coefficients of Chebyshev expansions for x 1 erf x on 0 x 2 , for x e x 2 erfc x on [ 2 , ) , and for e x 2 erfc x on [ 0 , ) (30D).

  • Shepherd and Laframboise (1981) gives coefficients of Chebyshev series for ( 1 + 2 x ) e x 2 erfc x on ( 0 , ) (22D).

  • Luke (1969b, vol. 2, pp. 422–435) gives main diagonal Padé approximations for F ( z ) , erf z , erfc z , C ( z ) , and S ( z ) ; approximate errors are given for a selection of z -values.

  • 16: 29.2 Differential Equations
    This equation has regular singularities at the points 2 p K + ( 2 q + 1 ) i K , where p , q , and K , K are the complete elliptic integrals of the first kind with moduli k , k ( = ( 1 k 2 ) 1 / 2 ) , respectively; see §19.2(ii). …
    29.2.8 η = ( e 1 e 3 ) 1 / 2 ( z i K ) ,
    17: 29.14 Orthogonality
    29.14.2 g , h = 0 K 0 K w ( s , t ) g ( s , t ) h ( s , t ) d t d s ,
    29.14.11 g , h = 0 4 K 0 2 K w ( s , t ) g ( s , t ) h ( s , t ) d t d s ,
    18: 22.3 Graphics
    See accompanying text
    Figure 22.3.16: sn ( x + i y , k ) for k = 0.99 , 3 K x 3 K , 0 y 4 K . K = 3.3566 , K = 1.5786 . Magnify 3D Help
    See accompanying text
    Figure 22.3.17: cn ( x + i y , k ) for k = 0.99 , 3 K x 3 K , 0 y 4 K . K = 3.3566 , K = 1.5786 . Magnify 3D Help
    See accompanying text
    Figure 22.3.18: dn ( x + i y , k ) for k = 0.99 , 3 K x 3 K , 0 y 4 K . K = 3.3566 , K = 1.5786 . Magnify 3D Help
    See accompanying text
    Figure 22.3.19: cd ( x + i y , k ) for k = 0.99 , 3 K x 3 K , 0 y 4 K . K = 3.3566 , K = 1.5786 . Magnify 3D Help
    See accompanying text
    Figure 22.3.20: dc ( x + i y , k ) for k = 0.99 , 3 K x 3 K , 0 y 4 K . K = 3.3566 , K = 1.5786 . Magnify 3D Help
    19: 22.11 Fourier and Hyperbolic Series
    22.11.5 sd ( z , k ) = 2 π K k k n = 0 ( 1 ) n q n + 1 2 sin ( ( 2 n + 1 ) ζ ) 1 + q 2 n + 1 ,
    22.11.6 nd ( z , k ) = π 2 K k + 2 π K k n = 1 ( 1 ) n q n cos ( 2 n ζ ) 1 + q 2 n .
    22.11.11 nc ( z , k ) π 2 K k sec ζ = 2 π K k n = 0 ( 1 ) n q 2 n + 1 cos ( ( 2 n + 1 ) ζ ) 1 + q 2 n + 1 ,
    where E = E ( k ) is defined by §19.2.9. …
    20: 7.23 Tables
  • Abramowitz and Stegun (1964, Chapter 7) includes erf x , ( 2 / π ) e x 2 , x [ 0 , 2 ] , 10D; ( 2 / π ) e x 2 , x [ 2 , 10 ] , 8S; x e x 2 erfc x , x 2 [ 0 , 0.25 ] , 7D; 2 n Γ ( 1 2 n + 1 ) i n erfc ( x ) , n = 1 ( 1 ) 6 , 10 , 11 , x [ 0 , 5 ] , 6S; F ( x ) , x [ 0 , 2 ] , 10D; x F ( x ) , x 2 [ 0 , 0.25 ] , 9D; C ( x ) , S ( x ) , x [ 0 , 5 ] , 7D; f ( x ) , g ( x ) , x [ 0 , 1 ] , x 1 [ 0 , 1 ] , 15D.

  • Zhang and Jin (1996, pp. 637, 639) includes ( 2 / π ) e x 2 , erf x , x = 0 ( .02 ) 1 ( .04 ) 3 , 8D; C ( x ) , S ( x ) , x = 0 ( .2 ) 10 ( 2 ) 100 ( 100 ) 500 , 8D.

  • Fettis et al. (1973) gives the first 100 zeros of erf z and w ( z ) (the table on page 406 of this reference is for w ( z ) , not for erfc z ), 11S.