About the Project

coalescing%20critical%20points

AdvancedHelp

(0.002 seconds)

1—10 of 233 matching pages

1: 36.4 Bifurcation Sets
§36.4(i) Formulas
Critical Points for Cuspoids
Critical Points for Umbilics
This is the codimension-one surface in 𝐱 space where critical points coalesce, satisfying (36.4.1) and … This is the codimension-one surface in 𝐱 space where critical points coalesce, satisfying (36.4.2) and …
2: 36 Integrals with Coalescing Saddles
Chapter 36 Integrals with Coalescing Saddles
3: 36.12 Uniform Approximation of Integrals
§36.12 Uniform Approximation of Integrals
§36.12(i) General Theory for Cuspoids
As 𝐲 varies as many as K + 1 (real or complex) critical points of the smooth phase function f can coalesce in clusters of two or more. … In (36.12.10), both second derivatives vanish when critical points coalesce, but their ratio remains finite. … For further information concerning integrals with several coalescing saddle points see Arnol’d et al. (1988), Berry and Howls (1993, 1994), Bleistein (1967), Duistermaat (1974), Ludwig (1966), Olde Daalhuis (2000), and Ursell (1972, 1980).
4: 9.15 Mathematical Applications
Airy functions play an indispensable role in the construction of uniform asymptotic expansions for contour integrals with coalescing saddle points, and for solutions of linear second-order ordinary differential equations with a simple turning point. …
5: 12.16 Mathematical Applications
PCFs are used as basic approximating functions in the theory of contour integrals with a coalescing saddle point and an algebraic singularity, and in the theory of differential equations with two coalescing turning points; see §§2.4(vi) and 2.8(vi). …
6: 2.4 Contour Integrals
§2.4(v) Coalescing Saddle Points: Chester, Friedman, and Ursell’s Method
§2.4(vi) Other Coalescing Critical Points
For two coalescing saddle points and an endpoint see Leubner and Ritsch (1986). …For a coalescing saddle point, a pole, and a branch point see Ciarkowski (1989). For many coalescing saddle points see §36.12. …
7: Bibliography Q
  • W.-Y. Qiu and R. Wong (2000) Uniform asymptotic expansions of a double integral: Coalescence of two stationary points. Proc. Roy. Soc. London Ser. A 456, pp. 407–431.
  • 8: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • M. V. Berry and C. J. Howls (1993) Unfolding the high orders of asymptotic expansions with coalescing saddles: Singularity theory, crossover and duality. Proc. Roy. Soc. London Ser. A 443, pp. 107–126.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • 9: 20 Theta Functions
    Chapter 20 Theta Functions
    10: 13.27 Mathematical Applications
    For applications of Whittaker functions to the uniform asymptotic theory of differential equations with a coalescing turning point and simple pole see §§2.8(vi) and 18.15(i). …