About the Project

change of variables

AdvancedHelp

(0.003 seconds)

21—30 of 93 matching pages

21: 8.27 Approximations
  • DiDonato (1978) gives a simple approximation for the function F ( p , x ) = x p e x 2 / 2 x e t 2 / 2 t p d t (which is related to the incomplete gamma function by a change of variables) for real p and large positive x . This takes the form F ( p , x ) = 4 x / h ( p , x ) , approximately, where h ( p , x ) = 3 ( x 2 p ) + ( x 2 p ) 2 + 8 ( x 2 + p ) and is shown to produce an absolute error O ( x 7 ) as x .

  • 22: 31.2 Differential Equations
    31.2.8 d 2 w d ζ 2 + ( ( 2 γ 1 ) cn ζ dn ζ sn ζ ( 2 δ 1 ) sn ζ dn ζ cn ζ ( 2 ϵ 1 ) k 2 sn ζ cn ζ dn ζ ) d w d ζ + 4 k 2 ( α β sn 2 ζ q ) w = 0 .
    23: 2.4 Contour Integrals
    The change of integration variable is given by
    2.4.18 p ( α , t ) = 1 3 w 3 + a w 2 + b w + c ,
    2.4.19 I ( α , z ) = e c z 𝒬 exp ( z ( 1 3 w 3 + a w 2 + b w ) ) f ( α , w ) d w ,
    By making a further change of variable
    2.4.21 w = z 1 / 3 v a ,
    24: 29.6 Fourier Series
    With ϕ = 1 2 π am ( z , k ) , as in (29.2.5), we have
    29.6.1 𝐸𝑐 ν 2 m ( z , k 2 ) = 1 2 A 0 + p = 1 A 2 p cos ( 2 p ϕ ) .
    29.6.16 𝐸𝑐 ν 2 m + 1 ( z , k 2 ) = p = 0 A 2 p + 1 cos ( ( 2 p + 1 ) ϕ ) .
    29.6.31 𝐸𝑠 ν 2 m + 1 ( z , k 2 ) = p = 0 B 2 p + 1 sin ( ( 2 p + 1 ) ϕ ) .
    29.6.46 𝐸𝑠 ν 2 m + 2 ( z , k 2 ) = p = 1 B 2 p sin ( 2 p ϕ ) .
    25: 2.3 Integrals of a Real Variable
    A uniform approximation can be constructed by quadratic change of integration variable:
    2.3.25 p ( α , t ) = 1 2 w 2 a w + b ,
    2.3.27 w = ( 2 p ( α , 0 ) 2 p ( α , α ) ) 1 / 2 ± ( 2 p ( α , t ) 2 p ( α , α ) ) 1 / 2 ,
    2.3.30 f ( α , w ) = q ( α , t ) ( t w ) λ 1 d t d w ,
    2.3.31 f ( α , w ) = s = 0 ϕ s ( α ) ( w a ) s ,
    26: 12.10 Uniform Asymptotic Expansions for Large Parameter
    12.10.35 U ( 1 2 μ 2 , μ t 2 ) 2 π 1 2 μ 1 3 g ( μ ) ϕ ( ζ ) ( Ai ( μ 4 3 ζ ) s = 0 A s ( ζ ) μ 4 s + Ai ( μ 4 3 ζ ) μ 8 3 s = 0 B s ( ζ ) μ 4 s ) ,
    12.10.36 U ( 1 2 μ 2 , μ t 2 ) ( 2 π ) 1 2 μ 2 3 g ( μ ) ϕ ( ζ ) ( Ai ( μ 4 3 ζ ) μ 4 3 s = 0 C s ( ζ ) μ 4 s + Ai ( μ 4 3 ζ ) s = 0 D s ( ζ ) μ 4 s ) ,
    12.10.40 ϕ ( ζ ) = ( ζ t 2 1 ) 1 4 .
    12.10.41 t = 1 + w 1 10 w 2 + 11 350 w 3 823 63000 w 4 + 1 50653 242 55000 w 5 + , | ζ | < ( 3 4 π ) 2 3 .
    12.10.45 χ ( ζ ) = ϕ ( ζ ) ϕ ( ζ ) = 1 2 t ( ϕ ( ζ ) ) 6 4 ζ .
    27: 29.2 Differential Equations
    29.2.4 ( 1 k 2 cos 2 ϕ ) d 2 w d ϕ 2 + k 2 cos ϕ sin ϕ d w d ϕ + ( h ν ( ν + 1 ) k 2 cos 2 ϕ ) w = 0 ,
    29.2.5 ϕ = 1 2 π am ( z , k ) .
    28: 19.2 Definitions
    k c = k ,
    p = 1 α 2 ,
    x = tan ϕ ,
    29: 8.11 Asymptotic Approximations and Expansions
    If x = a + ( 2 a ) 1 2 y and a + , then
    8.11.11 γ ( 1 a , x ) = x a 1 ( cos ( π a ) + sin ( π a ) π ( 2 π F ( y ) + 2 3 2 π a ( 1 y 2 ) ) e y 2 + O ( a 1 ) ) ,
    30: 27.14 Unrestricted Partitions
    27.14.8 p ( n ) e K n 4 n 3 ,
    27.14.9 p ( n ) = 1 π 2 k = 1 k A k ( n ) [ d d t sinh ( K t / k ) t ] t = n ( 1 / 24 ) ,