About the Project

cash app phone number +1(888‒481‒4477)

AdvancedHelp

(0.012 seconds)

21—30 of 61 matching pages

21: 13.8 Asymptotic Approximations for Large Parameters
13.8.16 ( k + 1 ) c k + 1 ( z ) + s = 0 k ( b B s + 1 ( s + 1 ) ! + z ( s + 1 ) B s + 2 ( s + 2 ) ! ) c k s ( z ) = 0 , k = 0 , 1 , 2 , .
22: 27.14 Unrestricted Partitions
27.14.4 f ( x ) = 1 x x 2 + x 5 + x 7 x 12 x 15 + = 1 + k = 1 ( 1 ) k ( x ω ( k ) + x ω ( k ) ) ,
27.14.6 p ( n ) = k = 1 ( 1 ) k + 1 ( p ( n ω ( k ) ) + p ( n ω ( k ) ) ) = p ( n 1 ) + p ( n 2 ) p ( n 5 ) p ( n 7 ) + ,
23: 27.3 Multiplicative Properties
27.3.5 d ( n ) = r = 1 ν ( n ) ( 1 + a r ) ,
27.3.6 σ α ( n ) = r = 1 ν ( n ) p r α ( 1 + a r ) 1 p r α 1 , α 0 .
24: 16.7 Relations to Other Functions
Further representations of special functions in terms of F q p functions are given in Luke (1969a, §§6.2–6.3), and an extensive list of F q q + 1 functions with rational numbers as parameters is given in Krupnikov and Kölbig (1997).
25: 24.2 Definitions and Generating Functions
B 2 n + 1 = 0 ,
( 1 ) n + 1 B 2 n > 0 , n = 1 , 2 , .
E 2 n + 1 = 0 ,
26: 4.13 Lambert W -Function
4.13.10 W k ( z ) ξ k ln ξ k + n = 1 ( 1 ) n ξ k n m = 1 n [ n n m + 1 ] ( ln ξ k ) m m ! ,
4.13.11 W ± 1 ( x 0 i ) η ln η + n = 1 1 η n m = 1 n [ n n m + 1 ] ( ln η ) m m ! ,
27: 35.7 Gaussian Hypergeometric Function of Matrix Argument
35.7.8 F 1 2 ( a , b c ; 𝐓 ) = Γ m ( c ) Γ m ( c a b ) Γ m ( c a ) Γ m ( c b ) F 1 2 ( a , b a + b c + 1 2 ( m + 1 ) ; 𝐈 𝐓 ) , 𝟎 < 𝐓 < 𝐈 ; 1 2 ( j + 1 ) a for some j = 1 , , m ; 1 2 ( j + 1 ) c and c a b 1 2 ( m j ) for all j = 1 , , m .
28: 35.8 Generalized Hypergeometric Functions of Matrix Argument
Let p and q be nonnegative integers; a 1 , , a p ; b 1 , , b q ; b j + 1 2 ( k + 1 ) , 1 j q , 1 k m . … If a j + 1 2 ( k + 1 ) for some j , k satisfying 1 j p , 1 k m , then the series expansion (35.8.1) terminates. …
29: 24.14 Sums
24.14.4 k = 0 n ( n k ) E k E n k = 2 n + 1 E n + 1 ( 0 ) = 2 n + 2 ( 1 2 n + 2 ) B n + 2 n + 2 .
24.14.8 ( 2 n ) ! ( 2 j ) ! ( 2 k ) ! ( 2 ) ! B 2 j B 2 k B 2 = ( n 1 ) ( 2 n 1 ) B 2 n + n ( n 1 2 ) B 2 n 2 ,
24.14.11 det [ B r + s ] = ( 1 ) n ( n + 1 ) / 2 ( k = 1 n k ! ) 6 / ( k = 1 2 n + 1 k ! ) ,
24.14.12 det [ E r + s ] = ( 1 ) n ( n + 1 ) / 2 ( k = 1 n k ! ) 2 .
30: 25.6 Integer Arguments
25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .