About the Project

binomials

AdvancedHelp

(0.000 seconds)

11—20 of 71 matching pages

11: 26.1 Special Notation
( m n ) binomial coefficient.
[ m n ] q Gaussian polynomial.
Other notations for s ( n , k ) , the Stirling numbers of the first kind, include S n ( k ) (Abramowitz and Stegun (1964, Chapter 24), Fort (1948)), S n k (Jordan (1939), Moser and Wyman (1958a)), ( n 1 k 1 ) B n k ( n ) (Milne-Thomson (1933)), ( 1 ) n k S 1 ( n 1 , n k ) (Carlitz (1960), Gould (1960)), ( 1 ) n k [ n k ] (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)). Other notations for S ( n , k ) , the Stirling numbers of the second kind, include 𝒮 n ( k ) (Fort (1948)), 𝔖 n k (Jordan (1939)), σ n k (Moser and Wyman (1958b)), ( n k ) B n k ( k ) (Milne-Thomson (1933)), S 2 ( k , n k ) (Carlitz (1960), Gould (1960)), { n k } (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)), and also an unconventional symbol in Abramowitz and Stegun (1964, Chapter 24).
12: 1.2 Elementary Algebra
§1.2(i) Binomial Coefficients
See also §26.3(i). … For complex z the binomial coefficient ( z k ) is defined via (1.2.6).
Binomial Theorem
1.2.3 ( n 0 ) + ( n 1 ) + + ( n n ) = 2 n .
13: 26.9 Integer Partitions: Restricted Number and Part Size
26.9.4 [ m n ] q = j = 1 n 1 q m n + j 1 q j , n 0 ,
is the Gaussian polynomial (or q -binomial coefficient); see also §§17.2(i)17.2(ii). …
26.9.5 n = 0 p k ( n ) q n = j = 1 k 1 1 q j = 1 + m = 1 [ k + m 1 m ] q q m ,
14: 26.6 Other Lattice Path Numbers
26.6.1 D ( m , n ) = k = 0 n ( n k ) ( m + n k n ) = k = 0 n 2 k ( m k ) ( n k ) .
26.6.2 M ( n ) = k = 0 n ( 1 ) k n + 2 k ( n k ) ( 2 n + 2 2 k n + 1 k ) .
26.6.3 N ( n , k ) = 1 n ( n k ) ( n k 1 ) .
26.6.13 M ( n ) = k = 0 n ( 1 ) k ( n k ) C ( n + 1 k ) ,
26.6.14 C ( n ) = k = 0 2 n ( 1 ) k ( 2 n k ) M ( 2 n k ) .
15: 24.4 Basic Properties
24.4.12 B n ( x + h ) = k = 0 n ( n k ) B k ( x ) h n k ,
24.4.13 E n ( x + h ) = k = 0 n ( n k ) E k ( x ) h n k ,
24.4.14 E n 1 ( x ) = 2 n k = 0 n ( n k ) ( 1 2 k ) B k x n k ,
24.4.15 B 2 n = 2 n 2 2 n ( 2 2 n 1 ) k = 0 n 1 ( 2 n 1 2 k ) E 2 k ,
24.4.16 E 2 n = 1 2 n + 1 k = 1 n ( 2 n 2 k 1 ) 2 2 k ( 2 2 k 1 1 ) B 2 k k ,
16: 25.6 Integer Arguments
25.6.8 ζ ( 2 ) = 3 k = 1 1 k 2 ( 2 k k ) .
25.6.9 ζ ( 3 ) = 5 2 k = 1 ( 1 ) k 1 k 3 ( 2 k k ) .
25.6.10 ζ ( 4 ) = 36 17 k = 1 1 k 4 ( 2 k k ) .
25.6.13 ( 1 ) k ζ ( k ) ( 2 n ) = 2 ( 1 ) n ( 2 π ) 2 n + 1 m = 0 k r = 0 m ( k m ) ( m r ) ( c k m ) Γ ( r ) ( 2 n + 1 ) ζ ( m r ) ( 2 n + 1 ) ,
25.6.14 ( 1 ) k ζ ( k ) ( 1 2 n ) = 2 ( 1 ) n ( 2 π ) 2 n m = 0 k r = 0 m ( k m ) ( m r ) ( c k m ) Γ ( r ) ( 2 n ) ζ ( m r ) ( 2 n ) ,
17: 26.8 Set Partitions: Stirling Numbers
26.8.16 s ( n , n 1 ) = S ( n , n 1 ) = ( n 2 ) ,
26.8.19 ( k h ) s ( n , k ) = j = k h n h ( n j ) s ( n j , h ) s ( j , k h ) , n k h ,
26.8.23 ( k h ) S ( n , k ) = j = k h n h ( n j ) S ( n j , h ) S ( j , k h ) , n k h ,
26.8.25 S ( n + 1 , k + 1 ) = j = k n ( n j ) S ( j , k ) ,
26.8.27 s ( n , n k ) = j = 0 k ( 1 ) j ( n 1 + j k + j ) ( n + k k j ) S ( k + j , j ) ,
18: 24.15 Related Sequences of Numbers
24.15.7 B n = k = 0 n ( 1 ) k ( n + 1 k + 1 ) S ( n + k , k ) / ( n + k k ) ,
24.15.11 k = 0 n / 2 ( n 2 k ) ( 5 9 ) k B 2 k u n 2 k = n 6 v n 1 + n 3 n v 2 n 2 ,
24.15.12 k = 0 n / 2 ( n 2 k ) ( 5 4 ) k E 2 k v n 2 k = 1 2 n 1 .
19: 26.14 Permutations: Order Notation
26.14.5 k = 0 n 1 n k ( x + k n ) = x n .
26.14.6 n k = j = 0 k ( 1 ) j ( n + 1 j ) ( k + 1 j ) n , n 1 ,
26.14.7 n k = j = 0 n k ( 1 ) n k j j ! ( n j k ) S ( n , j ) ,
26.14.12 S ( n , m ) = 1 m ! k = 0 n 1 n k ( k n m ) , n m , n 1 .
26.14.16 n 2 = 3 n ( n + 1 ) 2 n + ( n + 1 2 ) , n 1 .
20: 17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
17.5.1 ϕ 0 0 ( ; ; q , z ) = n = 0 ( 1 ) n q ( n 2 ) z n ( q ; q ) n = ( z ; q ) ;
q -Binomial Series
q -Binomial Theorem