About the Project

beta integral

AdvancedHelp

(0.006 seconds)

21—30 of 103 matching pages

21: 20.10 Integrals
20.10.4 0 e s t θ 1 ( β π 2 | i π t 2 ) d t = 0 e s t θ 2 ( ( 1 + β ) π 2 | i π t 2 ) d t = s sinh ( β s ) sech ( s ) ,
20.10.5 0 e s t θ 3 ( ( 1 + β ) π 2 | i π t 2 ) d t = 0 e s t θ 4 ( β π 2 | i π t 2 ) d t = s cosh ( β s ) csch ( s ) .
22: Bibliography M
  • K. L. Majumder and G. P. Bhattacharjee (1973) Algorithm AS 63. The incomplete beta integral. Appl. Statist. 22 (3), pp. 409–411.
  • 23: 19.33 Triaxial Ellipsoids
    19.33.11 U = 1 2 ( α β γ ) 2 R F ( α 2 , β 2 , γ 2 ) 0 ( g ( r ) ) 2 d r ,
    24: 36.6 Scaling Relations
    Ψ K ( 𝐱 ; k ) = k β K Ψ K ( 𝐲 ( k ) ) ,
    Ψ ( U ) ( 𝐱 ; k ) = k β ( U ) Ψ ( U ) ( 𝐲 ( U ) ( k ) ) ,
    25: 19.28 Integrals of Elliptic Integrals
    19.28.1 0 1 t σ 1 R F ( 0 , t , 1 ) d t = 1 2 ( B ( σ , 1 2 ) ) 2 ,
    19.28.2 0 1 t σ 1 R G ( 0 , t , 1 ) d t = σ 4 σ + 2 ( B ( σ , 1 2 ) ) 2 ,
    19.28.3 0 1 t σ 1 ( 1 t ) R D ( 0 , t , 1 ) d t = 3 4 σ + 2 ( B ( σ , 1 2 ) ) 2 .
    26: 1.15 Summability Methods
    1.15.48 𝐼 α 𝐼 β = 𝐼 α + β , α > 0 , β > 0 .
    27: 19.1 Special Notation
    All derivatives are denoted by differentials, not by primes. The first set of main functions treated in this chapter are Legendre’s complete integrals …of the first, second, and third kinds, respectively, and Legendre’s incomplete integralsHowever, it should be noted that in Chapter 8 of Abramowitz and Stegun (1964) the notation used for elliptic integrals differs from Chapter 17 and is consistent with that used in the present chapter and the rest of the NIST Handbook and DLMF. … The first three functions are incomplete integrals of the first, second, and third kinds, and the cel function includes complete integrals of all three kinds.
    28: 21.7 Riemann Surfaces
    21.7.9 E ( P 1 , P 2 ) = θ [ 𝜶 𝜷 ] ( P 1 P 2 𝝎 | 𝛀 ) / ( ζ ( P 1 ) ζ ( P 2 ) ) ,
    29: 17.6 ϕ 1 2 Function
    30: 19.29 Reduction of General Elliptic Integrals
    19.29.7 y x a α + b α t a δ + b δ t d t s ( t ) = 2 3 d α β d α γ R D ( U α β 2 , U α γ 2 , U α δ 2 ) + 2 X α Y α X δ Y δ U α δ , U α δ 0 .
    19.29.8 y x a α + b α t a 5 + b 5 t d t s ( t ) = 2 3 d α β d α γ d α δ d α 5 R J ( U 12 2 , U 13 2 , U 23 2 , U α 5 2 ) + 2 R C ( S α 5 2 , Q α 5 2 ) , S α 5 2 ( , 0 ) ,
    19.29.15 b j I ( 𝐞 l 𝐞 j ) = d l j I ( 𝐞 j ) + b l I ( 𝟎 ) , j , l = 1 , 2 , , n ,
    19.29.16 b β b γ I ( 𝐞 α ) = d α β d α γ I ( 𝐞 α ) + 2 b α ( s ( x ) a α + b α x s ( y ) a α + b α y ) ,
    19.29.18 b j q I ( q 𝐞 l ) = r = 0 q ( q r ) b l r d l j q r I ( r 𝐞 j ) , j , l = 1 , 2 , , n ;