About the Project

backward%20recursion

AdvancedHelp

(0.001 seconds)

21—30 of 140 matching pages

21: Bibliography G
  • W. Gautschi (1961) Recursive computation of the repeated integrals of the error function. Math. Comp. 15 (75), pp. 227–232.
  • W. Gautschi (1999) A note on the recursive calculation of incomplete gamma functions. ACM Trans. Math. Software 25 (1), pp. 101–107.
  • A. Gil, J. Segura, and N. M. Temme (2006c) The ABC of hyper recursions. J. Comput. Appl. Math. 190 (1-2), pp. 270–286.
  • A. Gil, J. Segura, and N. M. Temme (2007b) Numerically satisfactory solutions of hypergeometric recursions. Math. Comp. 76 (259), pp. 1449–1468.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • 22: Mathematical Introduction
    complex plane (excluding infinity).
    (or x ) backward difference operator: f ( x ) = f ( x ) f ( x 1 ) . (See also del operator in the Notations section.)
    23: Bibliography W
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • J. Wimp (1968) Recursion formulae for hypergeometric functions. Math. Comp. 22 (102), pp. 363–373.
  • M. E. Wojcicki (1961) Algorithm 44: Bessel functions computed recursively. Comm. ACM 4 (4), pp. 177–178.
  • P. Wynn (1966) Upon systems of recursions which obtain among the quotients of the Padé table. Numer. Math. 8 (3), pp. 264–269.
  • 24: 29.6 Fourier Series
    This solution can be constructed from (29.6.4) by backward recursion, starting with A 2 n + 2 = 0 and an arbitrary nonzero value of A 2 n , followed by normalization via (29.6.5) and (29.6.6). …
    25: Bibliography L
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • J. Letessier (1995) Co-recursive associated Jacobi polynomials. J. Comput. Appl. Math. 57 (1-2), pp. 203–213.
  • J. D. Louck (1958) New recursion relation for the Clebsch-Gordan coefficients. Phys. Rev. (2) 110 (4), pp. 815–816.
  • J. H. Luscombe and M. Luban (1998) Simplified recursive algorithm for Wigner 3 j and 6 j symbols. Phys. Rev. E 57 (6), pp. 7274–7277.
  • 26: 15.19 Methods of Computation
    For example, in the half-plane z 1 2 we can use (15.12.2) or (15.12.3) to compute F ( a , b ; c + N + 1 ; z ) and F ( a , b ; c + N ; z ) , where N is a large positive integer, and then apply (15.5.18) in the backward direction. …
    27: 18.19 Hahn Class: Definitions
  • 1.

    Hahn class (or linear lattice class). These are OP’s p n ( x ) where the role of d d x is played by Δ x or x or δ x (see §18.1(i) for the definition of these operators). The Hahn class consists of four discrete and two continuous families.

  • 2.

    Wilson class (or quadratic lattice class). These are OP’s p n ( x ) = p n ( λ ( y ) ) ( p n ( x ) of degree n in x , λ ( y ) quadratic in y ) where the role of the differentiation operator is played by Δ y Δ y ( λ ( y ) ) or y y ( λ ( y ) ) or δ y δ y ( λ ( y ) ) . The Wilson class consists of two discrete and two continuous families.

  • 28: 34.13 Methods of Computation
    Methods of computation for 3 j and 6 j symbols include recursion relations, see Schulten and Gordon (1975a), Luscombe and Luban (1998), and Edmonds (1974, pp. 42–45, 48–51, 97–99); summation of single-sum expressions for these symbols, see Varshalovich et al. (1988, §§8.2.6, 9.2.1) and Fang and Shriner (1992); evaluation of the generalized hypergeometric functions of unit argument that represent these symbols, see Srinivasa Rao and Venkatesh (1978) and Srinivasa Rao (1981). …
    29: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • G. Freud (1976) On the coefficients in the recursion formulae of orthogonal polynomials. Proc. Roy. Irish Acad. Sect. A 76 (1), pp. 1–6.
  • 30: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • K. Schulten and R. G. Gordon (1976) Recursive evaluation of 3 j - and 6 j - coefficients. Comput. Phys. Comm. 11 (2), pp. 269–278.
  • K. Schulten and R. G. Gordon (1975a) Exact recursive evaluation of 3 j - and 6 j -coefficients for quantum-mechanical coupling of angular momenta. J. Mathematical Phys. 16 (10), pp. 1961–1970.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.