About the Project

auxilliari Online Pharmacy -- www.icmat. -- Buy proxim UK USA 250mg 250mg

AdvancedHelp

Did you mean auxilliari Online Pharmacy -- www.icmat.. -- Buy proxim UK USA 250mg 250mg ?

(0.004 seconds)

1—10 of 52 matching pages

1: 7.4 Symmetry
f ( i z ) = ( 1 / 2 ) e 1 4 π i 1 2 π i z 2 i f ( z ) ,
g ( i z ) = ( 1 / 2 ) e 1 4 π i 1 2 π i z 2 + i g ( z ) .
f ( z ) = 2 cos ( 1 4 π + 1 2 π z 2 ) f ( z ) ,
g ( z ) = 2 sin ( 1 4 π + 1 2 π z 2 ) g ( z ) .
2: 7.5 Interrelations
7.5.3 C ( z ) = 1 2 + f ( z ) sin ( 1 2 π z 2 ) g ( z ) cos ( 1 2 π z 2 ) ,
7.5.10 g ( z ) ± i f ( z ) = 1 2 ( 1 ± i ) e ζ 2 erfc ζ .
7.5.11 | ( x ) | 2 = f 2 ( x ) + g 2 ( x ) , x 0 ,
7.5.12 | ( x ) | 2 = 2 + f 2 ( x ) + g 2 ( x ) 2 2 cos ( 1 4 π + 1 2 π x 2 ) f ( x ) 2 2 cos ( 1 4 π 1 2 π x 2 ) g ( x ) , x 0 .
3: 7.10 Derivatives
d f ( z ) d z = π z g ( z ) ,
d g ( z ) d z = π z f ( z ) 1 .
4: 7.7 Integral Representations
7.7.10 f ( z ) = 1 π 2 0 e π z 2 t / 2 t ( t 2 + 1 ) d t , | ph z | 1 4 π ,
7.7.11 g ( z ) = 1 π 2 0 t e π z 2 t / 2 t 2 + 1 d t , | ph z | 1 4 π ,
7.7.15 0 e a t cos ( t 2 ) d t = π 2 f ( a 2 π ) , a > 0 ,
7.7.16 0 e a t sin ( t 2 ) d t = π 2 g ( a 2 π ) , a > 0 .
5: 7.24 Approximations
  • Hastings (1955) gives several minimax polynomial and rational approximations for erf x , erfc x and the auxiliary functions f ( x ) and g ( x ) .

  • Bulirsch (1967) provides Chebyshev coefficients for the auxiliary functions f ( x ) and g ( x ) for x 3 (15D).

  • 6: 7.25 Software
    §7.25(iv) C ( x ) , S ( x ) , f ( x ) , g ( x ) , x
    7: 7.2 Definitions
    ( z ) , C ( z ) , and S ( z ) are entire functions of z , as are f ( z ) and g ( z ) in the next subsection. …
    7.2.10 f ( z ) = ( 1 2 S ( z ) ) cos ( 1 2 π z 2 ) ( 1 2 C ( z ) ) sin ( 1 2 π z 2 ) ,
    7.2.11 g ( z ) = ( 1 2 C ( z ) ) cos ( 1 2 π z 2 ) + ( 1 2 S ( z ) ) sin ( 1 2 π z 2 ) .
    8: 7.12 Asymptotic Expansions
    7.12.2 f ( z ) 1 π z m = 0 ( 1 ) m ( 1 2 ) 2 m ( π z 2 / 2 ) 2 m ,
    7.12.3 g ( z ) 1 π z m = 0 ( 1 ) m ( 1 2 ) 2 m + 1 ( π z 2 / 2 ) 2 m + 1 ,
    7.12.4 f ( z ) = 1 π z m = 0 n 1 ( 1 ) m ( 1 2 ) 2 m ( π z 2 / 2 ) 2 m + R n ( f ) ( z ) ,
    7.12.5 g ( z ) = 1 π z m = 0 n 1 ( 1 ) m ( 1 2 ) 2 m + 1 ( π z 2 / 2 ) 2 m + 1 , + R n ( g ) ( z ) ,
    9: Possible Errors in DLMF
    Errors in the printed Handbook may already have been corrected in the online version; please consult Errata. …
    10: 7.14 Integrals
    7.14.5 0 e a t C ( t ) d t = 1 a f ( a π ) , a > 0 ,
    7.14.6 0 e a t S ( t ) d t = 1 a g ( a π ) , a > 0 ,