About the Project

as z→∞

AdvancedHelp

(0.012 seconds)

31—40 of 729 matching pages

31: 7.1 Special Notation
x real variable.
z complex variable.
The main functions treated in this chapter are the error function erf z ; the complementary error functions erfc z and w ( z ) ; Dawson’s integral F ( z ) ; the Fresnel integrals ( z ) , C ( z ) , and S ( z ) ; the Goodwin–Staton integral G ( z ) ; the repeated integrals of the complementary error function i n erfc ( z ) ; the Voigt functions 𝖴 ( x , t ) and 𝖵 ( x , t ) . Alternative notations are Q ( z ) = 1 2 erfc ( z / 2 ) , P ( z ) = Φ ( z ) = 1 2 erfc ( z / 2 ) , Erf z = 1 2 π erf z , Erfi z = e z 2 F ( z ) , C 1 ( z ) = C ( 2 / π z ) , S 1 ( z ) = S ( 2 / π z ) , C 2 ( z ) = C ( 2 z / π ) , S 2 ( z ) = S ( 2 z / π ) . The notations P ( z ) , Q ( z ) , and Φ ( z ) are used in mathematical statistics, where these functions are called the normal or Gaussian probability functions. …
32: 13.3 Recurrence Relations and Derivatives
13.3.7 U ( a 1 , b , z ) + ( b 2 a z ) U ( a , b , z ) + a ( a b + 1 ) U ( a + 1 , b , z ) = 0 ,
13.3.8 ( b a 1 ) U ( a , b 1 , z ) + ( 1 b z ) U ( a , b , z ) + z U ( a , b + 1 , z ) = 0 ,
13.3.10 ( b a ) U ( a , b , z ) + U ( a 1 , b , z ) z U ( a , b + 1 , z ) = 0 ,
13.3.11 ( a + z ) U ( a , b , z ) z U ( a , b + 1 , z ) + a ( b a 1 ) U ( a + 1 , b , z ) = 0 ,
13.3.12 ( a 1 + z ) U ( a , b , z ) U ( a 1 , b , z ) + ( a b + 1 ) U ( a , b 1 , z ) = 0 .
33: 15.5 Derivatives and Contiguous Functions
15.5.5 ( z d d z z ) n ( z c a 1 ( 1 z ) a + b c F ( a , b ; c ; z ) ) = ( c a ) n z c a + n 1 ( 1 z ) a n + b c F ( a n , b ; c ; z ) .
15.5.10 ( z d d z z ) n = z n d n d z n z n , n = 1 , 2 , 3 , .
The six functions F ( a ± 1 , b ; c ; z ) , F ( a , b ± 1 ; c ; z ) , F ( a , b ; c ± 1 ; z ) are said to be contiguous to F ( a , b ; c ; z ) . … By repeated applications of (15.5.11)–(15.5.18) any function F ( a + k , b + ; c + m ; z ) , in which k , , m are integers, can be expressed as a linear combination of F ( a , b ; c ; z ) and any one of its contiguous functions, with coefficients that are rational functions of a , b , c , and z . …
15.5.20 z ( 1 z ) ( d F ( a , b ; c ; z ) / d z ) = ( c a ) F ( a 1 , b ; c ; z ) + ( a c + b z ) F ( a , b ; c ; z ) = ( c b ) F ( a , b 1 ; c ; z ) + ( b c + a z ) F ( a , b ; c ; z ) ,
34: 4.22 Infinite Products and Partial Fractions
4.22.1 sin z = z n = 1 ( 1 z 2 n 2 π 2 ) ,
4.22.2 cos z = n = 1 ( 1 4 z 2 ( 2 n 1 ) 2 π 2 ) .
When z n π , n ,
4.22.3 cot z = 1 z + 2 z n = 1 1 z 2 n 2 π 2 ,
4.22.5 csc z = 1 z + 2 z n = 1 ( 1 ) n z 2 n 2 π 2 .
35: 4.39 Continued Fractions
4.39.1 tanh z = z 1 + z 2 3 + z 2 5 + z 2 7 + , z ± 1 2 π i , ± 3 2 π i , .
4.39.2 arcsinh z 1 + z 2 = z 1 + 1 2 z 2 3 + 1 2 z 2 5 + 3 4 z 2 7 + 3 4 z 2 9 + ,
where z is in the open cut plane of Figure 4.37.1(i).
4.39.3 arctanh z = z 1 z 2 3 4 z 2 5 9 z 2 7 ,
where z is in the open cut plane of Figure 4.37.1(iii). …
36: 8.5 Confluent Hypergeometric Representations
8.5.1 γ ( a , z ) = a 1 z a e z M ( 1 , 1 + a , z ) = a 1 z a M ( a , 1 + a , z ) , a 0 , 1 , 2 , .
8.5.2 γ ( a , z ) = e z 𝐌 ( 1 , 1 + a , z ) = 𝐌 ( a , 1 + a , z ) .
8.5.3 Γ ( a , z ) = e z U ( 1 a , 1 a , z ) = z a e z U ( 1 , 1 + a , z ) .
8.5.4 γ ( a , z ) = a 1 z 1 2 a 1 2 e 1 2 z M 1 2 a 1 2 , 1 2 a ( z ) .
8.5.5 Γ ( a , z ) = e 1 2 z z 1 2 a 1 2 W 1 2 a 1 2 , 1 2 a ( z ) .
37: 4.8 Identities
In (4.8.1)–(4.8.4) z 1 z 2 0 . …This is interpreted that every value of Ln ( z 1 z 2 ) is one of the values of Ln z 1 + Ln z 2 , and vice versa. … In (4.8.5)–(4.8.7) and (4.8.10) z 0 . … If a 0 and a z has its general value, then … The restriction on z 1 can be removed when z 2 is an integer.
38: 9.4 Maclaurin Series
For z
9.4.1 Ai ( z ) = Ai ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Ai ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
9.4.2 Ai ( z ) = Ai ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Ai ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) ,
9.4.3 Bi ( z ) = Bi ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Bi ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
9.4.4 Bi ( z ) = Bi ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Bi ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) .
39: 4.7 Derivatives and Differential Equations
4.7.1 d d z ln z = 1 z ,
For a nonvanishing analytic function f ( z ) , the general solution of the differential equation
4.7.5 d w d z = f ( z ) f ( z )
4.7.6 w ( z ) = Ln ( f ( z ) ) +  constant .
When a z is a general power, ln a is replaced by the branch of Ln a used in constructing a z . …
40: 4.19 Maclaurin Series and Laurent Series
4.19.1 sin z = z z 3 3 ! + z 5 5 ! z 7 7 ! + ,
4.19.2 cos z = 1 z 2 2 ! + z 4 4 ! z 6 6 ! + .
4.19.3 tan z = z + z 3 3 + 2 15 z 5 + 17 315 z 7 + + ( 1 ) n 1 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π ,
4.19.4 csc z = 1 z + z 6 + 7 360 z 3 + 31 15120 z 5 + + ( 1 ) n 1 2 ( 2 2 n 1 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , 0 < | z | < π ,
4.19.6 cot z = 1 z z 3 z 3 45 2 945 z 5 ( 1 ) n 1 2 2 n B 2 n ( 2 n ) ! z 2 n 1 , 0 < | z | < π ,