About the Project

as z%E2%86%920

AdvancedHelp

(0.002 seconds)

31—40 of 734 matching pages

31: 10.13 Other Differential Equations
10.13.5 z 2 w ′′ + ( 1 2 r ) z w + ( λ 2 q 2 z 2 q + r 2 ν 2 q 2 ) w = 0 , w = z r 𝒞 ν ( λ z q ) ,
10.13.7 z 2 ( z 2 ν 2 ) w ′′ + z ( z 2 3 ν 2 ) w + ( ( z 2 ν 2 ) 2 ( z 2 + ν 2 ) ) w = 0 , w = 𝒞 ν ( z ) ,
In (10.13.9)–(10.13.11) 𝒞 ν ( z ) , 𝒟 μ ( z ) are any cylinder functions of orders ν , μ , respectively, and ϑ = z ( d / d z ) .
10.13.9 z 2 w ′′′ + 3 z w ′′ + ( 4 z 2 + 1 4 ν 2 ) w + 4 z w = 0 , w = 𝒞 ν ( z ) 𝒟 ν ( z ) ,
10.13.10 z 3 w ′′′ + z ( 4 z 2 + 1 4 ν 2 ) w + ( 4 ν 2 1 ) w = 0 , w = z 𝒞 ν ( z ) 𝒟 ν ( z ) ,
32: 4.36 Infinite Products and Partial Fractions
4.36.1 sinh z = z n = 1 ( 1 + z 2 n 2 π 2 ) ,
4.36.2 cosh z = n = 1 ( 1 + 4 z 2 ( 2 n 1 ) 2 π 2 ) .
When z n π i , n ,
4.36.3 coth z = 1 z + 2 z n = 1 1 z 2 + n 2 π 2 ,
4.36.5 csch z = 1 z + 2 z n = 1 ( 1 ) n z 2 + n 2 π 2 .
33: 4.35 Identities
4.35.11 cosh 2 z sinh 2 z = 1 ,
4.35.12 sech 2 z = 1 tanh 2 z ,
4.35.13 csch 2 z = coth 2 z 1 .
4.35.26 sinh ( 2 z ) = 2 sinh z cosh z = 2 tanh z 1 tanh 2 z ,
With z = x + i y
34: 10.49 Explicit Formulas
𝗃 0 ( z ) = sin z z ,
𝗃 2 ( z ) = ( 1 z + 3 z 3 ) sin z 3 z 2 cos z .
𝗒 2 ( z ) = ( 1 z 3 z 3 ) cos z 3 z 2 sin z .
k = 0 n a k ( n + 1 2 ) z n k is sometimes called the Bessel polynomial of degree n . …
𝗃 n ( z ) = z n ( 1 z d d z ) n sin z z ,
35: 12.8 Recurrence Relations and Derivatives
12.8.1 z U ( a , z ) U ( a 1 , z ) + ( a + 1 2 ) U ( a + 1 , z ) = 0 ,
12.8.2 U ( a , z ) + 1 2 z U ( a , z ) + ( a + 1 2 ) U ( a + 1 , z ) = 0 ,
12.8.3 U ( a , z ) 1 2 z U ( a , z ) + U ( a 1 , z ) = 0 ,
(12.8.1)–(12.8.4) are also satisfied by U ¯ ( a , z ) .
12.8.5 z V ( a , z ) V ( a + 1 , z ) + ( a 1 2 ) V ( a 1 , z ) = 0 ,
36: 7.9 Continued Fractions
7.9.1 π e z 2 erfc z = z z 2 + 1 2 1 + 1 z 2 + 3 2 1 + 2 z 2 + , z > 0 ,
7.9.2 π e z 2 erfc z = 2 z 2 z 2 + 1 1 2 2 z 2 + 5 3 4 2 z 2 + 9 , z > 0 ,
7.9.3 w ( z ) = i π 1 z 1 2 z 1 z 3 2 z 2 z , z > 0 .
37: 10.72 Mathematical Applications
The number m can also be replaced by any real constant λ ( > 2 ) in the sense that ( z z 0 ) λ f ( z ) is analytic and nonvanishing at z 0 ; moreover, g ( z ) is permitted to have a single or double pole at z 0 . … In regions in which the function f ( z ) has a simple pole at z = z 0 and ( z z 0 ) 2 g ( z ) is analytic at z = z 0 (the case λ = 1 in §10.72(i)), asymptotic expansions of the solutions w of (10.72.1) for large u can be constructed in terms of Bessel functions and modified Bessel functions of order ± 1 + 4 ρ , where ρ is the limiting value of ( z z 0 ) 2 g ( z ) as z z 0 . … In (10.72.1) assume f ( z ) = f ( z , α ) and g ( z ) = g ( z , α ) depend continuously on a real parameter α , f ( z , α ) has a simple zero z = z 0 ( α ) and a double pole z = 0 , except for a critical value α = a , where z 0 ( a ) = 0 . Assume that whether or not α = a , z 2 g ( z , α ) is analytic at z = 0 . …These approximations are uniform with respect to both z and α , including z = z 0 ( a ) , the cut neighborhood of z = 0 , and α = a . …
38: 7.1 Special Notation
x real variable.
z complex variable.
The main functions treated in this chapter are the error function erf z ; the complementary error functions erfc z and w ( z ) ; Dawson’s integral F ( z ) ; the Fresnel integrals ( z ) , C ( z ) , and S ( z ) ; the Goodwin–Staton integral G ( z ) ; the repeated integrals of the complementary error function i n erfc ( z ) ; the Voigt functions 𝖴 ( x , t ) and 𝖵 ( x , t ) . Alternative notations are Q ( z ) = 1 2 erfc ( z / 2 ) , P ( z ) = Φ ( z ) = 1 2 erfc ( z / 2 ) , Erf z = 1 2 π erf z , Erfi z = e z 2 F ( z ) , C 1 ( z ) = C ( 2 / π z ) , S 1 ( z ) = S ( 2 / π z ) , C 2 ( z ) = C ( 2 z / π ) , S 2 ( z ) = S ( 2 z / π ) . The notations P ( z ) , Q ( z ) , and Φ ( z ) are used in mathematical statistics, where these functions are called the normal or Gaussian probability functions. …
39: 13.3 Recurrence Relations and Derivatives
13.3.7 U ( a 1 , b , z ) + ( b 2 a z ) U ( a , b , z ) + a ( a b + 1 ) U ( a + 1 , b , z ) = 0 ,
13.3.8 ( b a 1 ) U ( a , b 1 , z ) + ( 1 b z ) U ( a , b , z ) + z U ( a , b + 1 , z ) = 0 ,
13.3.10 ( b a ) U ( a , b , z ) + U ( a 1 , b , z ) z U ( a , b + 1 , z ) = 0 ,
13.3.11 ( a + z ) U ( a , b , z ) z U ( a , b + 1 , z ) + a ( b a 1 ) U ( a + 1 , b , z ) = 0 ,
13.3.12 ( a 1 + z ) U ( a , b , z ) U ( a 1 , b , z ) + ( a b + 1 ) U ( a , b 1 , z ) = 0 .
40: 15.5 Derivatives and Contiguous Functions
15.5.5 ( z d d z z ) n ( z c a 1 ( 1 z ) a + b c F ( a , b ; c ; z ) ) = ( c a ) n z c a + n 1 ( 1 z ) a n + b c F ( a n , b ; c ; z ) .
15.5.10 ( z d d z z ) n = z n d n d z n z n , n = 1 , 2 , 3 , .
The six functions F ( a ± 1 , b ; c ; z ) , F ( a , b ± 1 ; c ; z ) , F ( a , b ; c ± 1 ; z ) are said to be contiguous to F ( a , b ; c ; z ) . … By repeated applications of (15.5.11)–(15.5.18) any function F ( a + k , b + ; c + m ; z ) , in which k , , m are integers, can be expressed as a linear combination of F ( a , b ; c ; z ) and any one of its contiguous functions, with coefficients that are rational functions of a , b , c , and z . …
15.5.20 z ( 1 z ) ( d F ( a , b ; c ; z ) / d z ) = ( c a ) F ( a 1 , b ; c ; z ) + ( a c + b z ) F ( a , b ; c ; z ) = ( c b ) F ( a , b 1 ; c ; z ) + ( b c + a z ) F ( a , b ; c ; z ) ,