About the Project

as x→±1

AdvancedHelp

(0.042 seconds)

21—30 of 629 matching pages

21: 10.63 Recurrence Relations and Derivatives
f ν + 1 ( x ) + g ν + 1 ( x ) f ν 1 ( x ) g ν 1 ( x ) = 2 2 f ν ( x ) ,
f ν ( x ) = ( 1 / 2 ) ( f ν + 1 ( x ) + g ν + 1 ( x ) ) + ( ν / x ) f ν ( x ) .
2 ber x = ber 1 x + bei 1 x ,
2 bei x = ber 1 x + bei 1 x .
2 ker x = ker 1 x + kei 1 x ,
22: 8.26 Tables
  • Zhang and Jin (1996, Table 3.8) tabulates γ ( a , x ) for a = 0.5 , 1 , 3 , 5 , 10 , 25 , 50 , 100 , x = 0 ( .1 ) 1 ( 1 ) 3 , 5 ( 5 ) 30 , 50 , 100 to 8D or 8S.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Stankiewicz (1968) tabulates E n ( x ) for n = 1 ( 1 ) 10 , x = 0.01 ( .01 ) 5 to 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 23: 16.16 Transformations of Variables
    16.16.5_5 F 4 ( α , β ; γ , β ; x ( 1 y ) , y ( 1 x ) ) = ( 1 x ) α ( 1 y ) α F 1 ( α ; γ β , α γ + 1 ; γ ; x x 1 , x y ( 1 x ) ( 1 y ) ) ,
    16.16.6 F 4 ( α , β ; γ , α + β γ + 1 ; x ( 1 y ) , y ( 1 x ) ) = F 1 2 ( α , β γ ; x ) F 1 2 ( α , β α + β γ + 1 ; y ) .
    16.16.7 F 4 ( α , β ; γ , γ ; x ( 1 y ) , y ( 1 x ) ) = k = 0 ( α ) k ( β ) k ( α + β γ γ + 1 ) k ( γ ) k ( γ ) k k ! x k y k F 1 2 ( α + k , β + k γ + k ; x ) F 1 2 ( α + k , β + k γ + k ; y ) ;
    16.16.8 F 1 ( α ; β , β ; γ ; x , y ) = ( 1 x ) β ( 1 y ) β F 1 ( γ α ; β , β ; γ ; x x 1 , y y 1 ) = ( 1 x ) α F 1 ( α ; γ β β , β ; γ ; x x 1 , y x 1 x ) ,
    16.16.9 F 2 ( α ; β , β ; γ , γ ; x , y ) = ( 1 x ) α F 2 ( α ; γ β , β ; γ , γ ; x x 1 , y 1 x ) ,
    24: 28.35 Tables
  • Blanch and Clemm (1962) includes values of Mc n ( 1 ) ( x , q ) and Mc n ( 1 ) ( x , q ) for n = 0 ( 1 ) 15 with q = 0 ( .05 ) 1 , x = 0 ( .02 ) 1 . Also Ms n ( 1 ) ( x , q ) and Ms n ( 1 ) ( x , q ) for n = 1 ( 1 ) 15 with q = 0 ( .05 ) 1 , x = 0 ( .02 ) 1 . Precision is generally 7D.

  • Blanch and Clemm (1965) includes values of Mc n ( 2 ) ( x , q ) , Mc n ( 2 ) ( x , q ) for n = 0 ( 1 ) 7 , x = 0 ( .02 ) 1 ; n = 8 ( 1 ) 15 , x = 0 ( .01 ) 1 . Also Ms n ( 2 ) ( x , q ) , Ms n ( 2 ) ( x , q ) for n = 1 ( 1 ) 7 , x = 0 ( .02 ) 1 ; n = 8 ( 1 ) 15 , x = 0 ( .01 ) 1 . In all cases q = 0 ( .05 ) 1 . Precision is generally 7D. Approximate formulas and graphs are also included.

  • Ince (1932) includes eigenvalues a n , b n , and Fourier coefficients for n = 0 or 1 ( 1 ) 6 , q = 0 ( 1 ) 10 ( 2 ) 20 ( 4 ) 40 ; 7D. Also ce n ( x , q ) , se n ( x , q ) for q = 0 ( 1 ) 10 , x = 1 ( 1 ) 90 , corresponding to the eigenvalues in the tables; 5D. Notation: a n = 𝑏𝑒 n 2 q , b n = 𝑏𝑜 n 2 q .

  • Kirkpatrick (1960) contains tables of the modified functions Ce n ( x , q ) , Se n + 1 ( x , q ) for n = 0 ( 1 ) 5 , q = 1 ( 1 ) 20 , x = 0.1 ( .1 ) 1 ; 4D or 5D.

  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ( q ) , b n + 1 ( q ) for n = 0 ( 1 ) 4 , q = 0 ( 1 ) 50 ; n = 0 ( 1 ) 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ( 50 ) 200 . Fourier coefficients for ce n ( x , 10 ) , se n + 1 ( x , 10 ) , n = 0 ( 1 ) 7 . Mathieu functions ce n ( x , 10 ) , se n + 1 ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , x = 0 ( 5 ) 90 . Modified Mathieu functions Mc n ( j ) ( x , 10 ) , Ms n + 1 ( j ) ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , j = 1 , 2 , x = 0 ( .2 ) 4 . Precision is mostly 9S.

  • 25: 10.48 Graphs
    See accompanying text
    Figure 10.48.1: 𝗃 n ( x ) , n = 0 ( 1 ) 4 , 0 x 12 . Magnify
    See accompanying text
    Figure 10.48.2: 𝗒 n ( x ) , n = 0 ( 1 ) 4 , 0 < x 12 . Magnify
    See accompanying text
    Figure 10.48.5: 𝗂 0 ( 1 ) ( x ) , 𝗂 0 ( 2 ) ( x ) , 𝗄 0 ( x ) , 0 x 4 . Magnify
    See accompanying text
    Figure 10.48.6: 𝗂 1 ( 1 ) ( x ) , 𝗂 1 ( 2 ) ( x ) , 𝗄 1 ( x ) , 0 x 4 . Magnify
    See accompanying text
    Figure 10.48.7: 𝗂 5 ( 1 ) ( x ) , 𝗂 5 ( 2 ) ( x ) , 𝗄 5 ( x ) , 0 x 8 . Magnify
    26: 5.22 Tables
    Abramowitz and Stegun (1964, Chapter 6) tabulates Γ ( x ) , ln Γ ( x ) , ψ ( x ) , and ψ ( x ) for x = 1 ( .005 ) 2 to 10D; ψ ′′ ( x ) and ψ ( 3 ) ( x ) for x = 1 ( .01 ) 2 to 10D; Γ ( n ) , 1 / Γ ( n ) , Γ ( n + 1 2 ) , ψ ( n ) , log 10 Γ ( n ) , log 10 Γ ( n + 1 3 ) , log 10 Γ ( n + 1 2 ) , and log 10 Γ ( n + 2 3 ) for n = 1 ( 1 ) 101 to 8–11S; Γ ( n + 1 ) for n = 100 ( 100 ) 1000 to 20S. Zhang and Jin (1996, pp. 67–69 and 72) tabulates Γ ( x ) , 1 / Γ ( x ) , Γ ( x ) , ln Γ ( x ) , ψ ( x ) , ψ ( x ) , ψ ( x ) , and ψ ( x ) for x = 0 ( .1 ) 5 to 8D or 8S; Γ ( n + 1 ) for n = 0 ( 1 ) 100 ( 10 ) 250 ( 50 ) 500 ( 100 ) 3000 to 51S. … Abramov (1960) tabulates ln Γ ( x + i y ) for x = 1 ( .01 ) 2 , y = 0 ( .01 ) 4 to 6D. Abramowitz and Stegun (1964, Chapter 6) tabulates ln Γ ( x + i y ) for x = 1 ( .1 ) 2 , y = 0 ( .1 ) 10 to 12D. …Zhang and Jin (1996, pp. 70, 71, and 73) tabulates the real and imaginary parts of Γ ( x + i y ) , ln Γ ( x + i y ) , and ψ ( x + i y ) for x = 0.5 , 1 , 5 , 10 , y = 0 ( .5 ) 10 to 8S.
    27: 4.18 Inequalities
    4.18.1 2 x π sin x x , 0 x 1 2 π .
    4.18.2 x tan x , 0 x < 1 2 π ,
    4.18.3 cos x sin x x 1 , 0 x π ,
    4.18.4 π < sin ( π x ) x ( 1 x ) 4 , 0 < x < 1 .
    28: 26.1 Special Notation
    x n ¯ = x ( x + 1 ) ( x + 2 ) ( x + n 1 ) ,
    x n ¯ = x ( x 1 ) ( x 2 ) ( x n + 1 ) .
    29: 14.26 Uniform Asymptotic Expansions
    The uniform asymptotic approximations given in §14.15 for P ν μ ( x ) and 𝑸 ν μ ( x ) for 1 < x < are extended to domains in the complex plane in the following references: §§14.15(i) and 14.15(ii), Dunster (2003b); §14.15(iii), Olver (1997b, Chapter 12); §14.15(iv), Boyd and Dunster (1986). …
    30: 11.15 Approximations
  • Luke (1975, pp. 416–421) gives Chebyshev-series expansions for 𝐇 n ( x ) , 𝐋 n ( x ) , 0 | x | 8 , and 𝐇 n ( x ) Y n ( x ) , x 8 , for n = 0 , 1 ; 0 x t m 𝐇 0 ( t ) d t , 0 x t m 𝐋 0 ( t ) d t , 0 | x | 8 , m = 0 , 1 and 0 x ( 𝐇 0 ( t ) Y 0 ( t ) ) d t , x t 1 ( 𝐇 0 ( t ) Y 0 ( t ) ) d t , x 8 ; the coefficients are to 20D.

  • MacLeod (1993) gives Chebyshev-series expansions for 𝐋 0 ( x ) , 𝐋 1 ( x ) , 0 x 16 , and I 0 ( x ) 𝐋 0 ( x ) , I 1 ( x ) 𝐋 1 ( x ) , x 16 ; the coefficients are to 20D.

  • Newman (1984) gives polynomial approximations for 𝐇 n ( x ) for n = 0 , 1 , 0 x 3 , and rational-fraction approximations for 𝐇 n ( x ) Y n ( x ) for n = 0 , 1 , x 3 . The maximum errors do not exceed 1.2×10⁻⁸ for the former and 2.5×10⁻⁸ for the latter.