About the Project

as%20x%E2%86%92%C2%B11

AdvancedHelp

(0.003 seconds)

21—30 of 687 matching pages

21: 23 Weierstrass Elliptic and Modular
Functions
22: 7.8 Inequalities
Let 𝖬 ( x ) denote Mills’ ratio: …
7.8.4 𝖬 ( x ) < 2 3 x + x 2 + 4 , x > 1 2 2 ,
7.8.5 x 2 2 x 2 + 1 x 2 ( 2 x 2 + 5 ) 4 x 4 + 12 x 2 + 3 x 𝖬 ( x ) < 2 x 4 + 9 x 2 + 4 4 x 4 + 20 x 2 + 15 < x 2 + 1 2 x 2 + 3 , x 0 .
The function F ( x ) / 1 e 2 x 2 is strictly decreasing for x > 0 . For these and similar results for Dawson’s integral F ( x ) see Janssen (2021). …
23: 10.3 Graphics
For the modulus and phase functions M ν ( x ) , θ ν ( x ) , N ν ( x ) , and ϕ ν ( x ) see §10.18.
See accompanying text
Figure 10.3.1: J 0 ( x ) , Y 0 ( x ) , J 1 ( x ) , Y 1 ( x ) , 0 x 10 . Magnify
See accompanying text
Figure 10.3.2: J 5 ( x ) , Y 5 ( x ) , M 5 ( x ) , 0 x 15 . Magnify
See accompanying text
Figure 10.3.14: H 5 ( 1 ) ( x + i y ) , 20 x 10 , 4 y 4 . … Magnify 3D Help
See accompanying text
Figure 10.3.16: H 5.5 ( 1 ) ( x + i y ) , 20 x 10 , 4 y 4 . … Magnify 3D Help
24: 22.3 Graphics
Line graphs of the functions sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , cd ( x , k ) , sd ( x , k ) , nd ( x , k ) , dc ( x , k ) , nc ( x , k ) , sc ( x , k ) , ns ( x , k ) , ds ( x , k ) , and cs ( x , k ) for representative values of real x and real k illustrating the near trigonometric ( k = 0 ), and near hyperbolic ( k = 1 ) limits. … sn ( x , k ) , cn ( x , k ) , and dn ( x , k ) as functions of real arguments x and k . …
See accompanying text
Figure 22.3.13: sn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
See accompanying text
Figure 22.3.14: cn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
See accompanying text
Figure 22.3.15: dn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
25: 5.22 Tables
Abramowitz and Stegun (1964, Chapter 6) tabulates Γ ( x ) , ln Γ ( x ) , ψ ( x ) , and ψ ( x ) for x = 1 ( .005 ) 2 to 10D; ψ ′′ ( x ) and ψ ( 3 ) ( x ) for x = 1 ( .01 ) 2 to 10D; Γ ( n ) , 1 / Γ ( n ) , Γ ( n + 1 2 ) , ψ ( n ) , log 10 Γ ( n ) , log 10 Γ ( n + 1 3 ) , log 10 Γ ( n + 1 2 ) , and log 10 Γ ( n + 2 3 ) for n = 1 ( 1 ) 101 to 8–11S; Γ ( n + 1 ) for n = 100 ( 100 ) 1000 to 20S. Zhang and Jin (1996, pp. 67–69 and 72) tabulates Γ ( x ) , 1 / Γ ( x ) , Γ ( x ) , ln Γ ( x ) , ψ ( x ) , ψ ( x ) , ψ ( x ) , and ψ ( x ) for x = 0 ( .1 ) 5 to 8D or 8S; Γ ( n + 1 ) for n = 0 ( 1 ) 100 ( 10 ) 250 ( 50 ) 500 ( 100 ) 3000 to 51S. … Abramov (1960) tabulates ln Γ ( x + i y ) for x = 1 ( .01 ) 2 , y = 0 ( .01 ) 4 to 6D. …This reference also includes ψ ( x + i y ) for the same arguments to 5D. Zhang and Jin (1996, pp. 70, 71, and 73) tabulates the real and imaginary parts of Γ ( x + i y ) , ln Γ ( x + i y ) , and ψ ( x + i y ) for x = 0.5 , 1 , 5 , 10 , y = 0 ( .5 ) 10 to 8S.
26: 36.5 Stokes Sets
The Stokes set consists of the rays ph x = ± 2 π / 3 in the complex x -plane. … where x ± are the two smallest positive roots of the equation … The first sheet corresponds to x < 0 and is generated as a solution of Equations (36.5.6)–(36.5.9). … When | X | > X 2 the Stokes set Y S ( X ) is given by … Alternatively, when | X | < X 2
27: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • G. Nemes (2015c) The resurgence properties of the incomplete gamma function II. Stud. Appl. Math. 135 (1), pp. 86–116.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • M. Noumi and Y. Yamada (1999) Symmetries in the fourth Painlevé equation and Okamoto polynomials. Nagoya Math. J. 153, pp. 53–86.
  • 28: 3.4 Differentiation
    If f ( n + 2 ) ( x ) is continuous on the interval I defined in §3.3(i), then the remainder in (3.4.1) is given by … where C is a simple closed contour described in the positive rotational sense such that C and its interior lie in the domain of analyticity of f , and x 0 is interior to C . Taking C to be a circle of radius r centered at x 0 , we obtain … f ( z ) = e z , x 0 = 0 . … For partial derivatives we use the notation u t , s = u ( x 0 + t h , y 0 + s h ) . …
    29: 7.23 Tables
  • Abramowitz and Stegun (1964, Chapter 7) includes erf x , ( 2 / π ) e x 2 , x [ 0 , 2 ] , 10D; ( 2 / π ) e x 2 , x [ 2 , 10 ] , 8S; x e x 2 erfc x , x 2 [ 0 , 0.25 ] , 7D; 2 n Γ ( 1 2 n + 1 ) i n erfc ( x ) , n = 1 ( 1 ) 6 , 10 , 11 , x [ 0 , 5 ] , 6S; F ( x ) , x [ 0 , 2 ] , 10D; x F ( x ) , x 2 [ 0 , 0.25 ] , 9D; C ( x ) , S ( x ) , x [ 0 , 5 ] , 7D; f ( x ) , g ( x ) , x [ 0 , 1 ] , x 1 [ 0 , 1 ] , 15D.

  • Abramowitz and Stegun (1964, Table 27.6) includes the Goodwin–Staton integral G ( x ) , x = 1 ( .1 ) 3 ( .5 ) 8 , 4D; also G ( x ) + ln x , x = 0 ( .05 ) 1 , 4D.

  • Zhang and Jin (1996, pp. 637, 639) includes ( 2 / π ) e x 2 , erf x , x = 0 ( .02 ) 1 ( .04 ) 3 , 8D; C ( x ) , S ( x ) , x = 0 ( .2 ) 10 ( 2 ) 100 ( 100 ) 500 , 8D.

  • §7.23(iii) Complex Variables, z = x + i y
  • Zhang and Jin (1996, pp. 638, 640–641) includes the real and imaginary parts of erf z , x [ 0 , 5 ] , y = 0.5 ( .5 ) 3 , 7D and 8D, respectively; the real and imaginary parts of x e ± i t 2 d t , ( 1 / π ) e i ( x 2 + ( π / 4 ) ) x e ± i t 2 d t , x = 0 ( .5 ) 20 ( 1 ) 25 , 8D, together with the corresponding modulus and phase to 8D and 6D (degrees), respectively.

  • 30: 36 Integrals with Coalescing Saddles