About the Project

as%20Bessel%20functions

AdvancedHelp

(0.008 seconds)

11—20 of 26 matching pages

11: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • L. Z. Salchev and V. B. Popov (1976) A property of the zeros of cross-product Bessel functions of different orders. Z. Angew. Math. Mech. 56 (2), pp. 120–121.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • F. Stenger (1993) Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York.
  • 12: 11.14 Tables
    §11.14(ii) Struve Functions
  • Abramowitz and Stegun (1964, Chapter 12) tabulates 𝐇 n ( x ) , 𝐇 n ( x ) Y n ( x ) , and I n ( x ) 𝐋 n ( x ) for n = 0 , 1 and x = 0 ( .1 ) 5 , x 1 = 0 ( .01 ) 0.2 to 6D or 7D.

  • Zhang and Jin (1996) tabulates 𝐇 n ( x ) and 𝐋 n ( x ) for n = 4 ( 1 ) 3 and x = 0 ( 1 ) 20 to 8D or 7S.

  • §11.14(iv) Anger–Weber Functions
    §11.14(v) Incomplete Functions
    13: Bibliography K
  • P. L. Kapitsa (1951b) The computation of the sums of negative even powers of roots of Bessel functions. Doklady Akad. Nauk SSSR (N.S.) 77, pp. 561–564.
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov and S. L. Skorokhodov (1984a) Calculation of modified Bessel functions in a complex domain. Zh. Vychisl. Mat. i Mat. Fiz. 24 (5), pp. 650–664.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • B. G. Korenev (2002) Bessel Functions and their Applications. Analytical Methods and Special Functions, Vol. 8, Taylor & Francis Ltd., London-New York.
  • 14: Bibliography R
  • Yu. L. Ratis and P. Fernández de Córdoba (1993) A code to calculate (high order) Bessel functions based on the continued fractions method. Comput. Phys. Comm. 76 (3), pp. 381–388.
  • J. T. Ratnanather, J. H. Kim, S. Zhang, A. M. J. Davis, and S. K. Lucas (2014) Algorithm 935: IIPBF, a MATLAB toolbox for infinite integral of products of two Bessel functions. ACM Trans. Math. Softw. 40 (2), pp. 14:1–14:12.
  • F. E. Relton (1965) Applied Bessel Functions. Dover Publications Inc., New York.
  • G. F. Remenets (1973) Computation of Hankel (Bessel) functions of complex index and argument by numerical integration of a Schläfli contour integral. Ž. Vyčisl. Mat. i Mat. Fiz. 13, pp. 1415–1424, 1636.
  • M. D. Rogers (2005) Partial fractions expansions and identities for products of Bessel functions. J. Math. Phys. 46 (4), pp. 043509–1–043509–18.
  • 15: 30.9 Asymptotic Approximations and Expansions
    §30.9(i) Prolate Spheroidal Wave Functions
    For uniform asymptotic expansions in terms of Airy or Bessel functions for real values of the parameters, complex values of the variable, and with explicit error bounds see Dunster (1986). …
    §30.9(ii) Oblate Spheroidal Wave Functions
    For uniform asymptotic expansions in terms of elementary, Airy, or Bessel functions for real values of the parameters, complex values of the variable, and with explicit error bounds see Dunster (1992, 1995). …
    §30.9(iii) Other Approximations and Expansions
    16: 11.6 Asymptotic Expansions
    §11.6(i) Large | z | , Fixed ν
    §11.6(ii) Large | ν | , Fixed z
    Here …
    c 3 ( λ ) = 20 λ 6 4 λ 4 ,
    17: 6.20 Approximations
    §6.20(i) Approximations in Terms of Elementary Functions
  • Cody and Thacher (1968) provides minimax rational approximations for E 1 ( x ) , with accuracies up to 20S.

  • Cody and Thacher (1969) provides minimax rational approximations for Ei ( x ) , with accuracies up to 20S.

  • MacLeod (1996b) provides rational approximations for the sine and cosine integrals and for the auxiliary functions f and g , with accuracies up to 20S.

  • Luke (1969b, pp. 41–42) gives Chebyshev expansions of Ein ( a x ) , Si ( a x ) , and Cin ( a x ) for 1 x 1 , a . The coefficients are given in terms of series of Bessel functions.

  • 18: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • G. Nemes (2017b) Error Bounds for the Large-Argument Asymptotic Expansions of the Hankel and Bessel Functions. Acta Appl. Math. 150, pp. 141–177.
  • E. Neuman (2004) Inequalities involving Bessel functions of the first kind. JIPAM. J. Inequal. Pure Appl. Math. 5 (4), pp. Article 94, 4 pp. (electronic).
  • J. N. Newman (1984) Approximations for the Bessel and Struve functions. Math. Comp. 43 (168), pp. 551–556.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 19: Bibliography C
  • J. B. Campbell (1980) On Temme’s algorithm for the modified Bessel function of the third kind. ACM Trans. Math. Software 6 (4), pp. 581–586.
  • R. Cicchetti and A. Faraone (2004) Incomplete Hankel and modified Bessel functions: A class of special functions for electromagnetics. IEEE Trans. Antennas and Propagation 52 (12), pp. 3373–3389.
  • J. A. Cochran (1963) Further formulas for calculating approximate values of the zeros of certain combinations of Bessel functions. IEEE Trans. Microwave Theory Tech. 11 (6), pp. 546–547.
  • J. A. Cochran (1966a) The analyticity of cross-product Bessel function zeros. Proc. Cambridge Philos. Soc. 62, pp. 215–226.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • 20: Bibliography L
  • A. Laforgia (1986) Inequalities for Bessel functions. J. Comput. Appl. Math. 15 (1), pp. 75–81.
  • A. Laforgia (1991) Bounds for modified Bessel functions. J. Comput. Appl. Math. 34 (3), pp. 263–267.
  • L. J. Landau (2000) Bessel functions: Monotonicity and bounds. J. London Math. Soc. (2) 61 (1), pp. 197–215.
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • S. Lewanowicz (1991) Evaluation of Bessel function integrals with algebraic singularities. J. Comput. Appl. Math. 37 (1-3), pp. 101–112.