About the Project

arguments e±iπ/3

AdvancedHelp

(0.003 seconds)

21—30 of 539 matching pages

21: 4.1 Special Notation
k , m , n integers.
e base of natural logarithms.
It is assumed the user is familiar with the definitions and properties of elementary functions of real arguments x . The main purpose of the present chapter is to extend these definitions and properties to complex arguments z . The main functions treated in this chapter are the logarithm ln z , Ln z ; the exponential exp z , e z ; the circular trigonometric (or just trigonometric) functions sin z , cos z , tan z , csc z , sec z , cot z ; the inverse trigonometric functions arcsin z , Arcsin z , etc. … Sometimes “arc” is replaced by the index “ 1 ”, e. …
22: 19.11 Addition Theorems
19.11.1 F ( θ , k ) + F ( ϕ , k ) = F ( ψ , k ) ,
19.11.2 E ( θ , k ) + E ( ϕ , k ) = E ( ψ , k ) + k 2 sin θ sin ϕ sin ψ .
19.11.9 tan θ = 1 / ( k tan ϕ ) .
23: 4.29 Graphics
§4.29(i) Real Arguments
See accompanying text
Figure 4.29.6: Principal values of arccsch x and arcsech x . … Magnify
§4.29(ii) Complex Arguments
24: 16.27 Software
§16.27(ii) Real Argument and Parameters
§16.27(iii) Complex Argument and/or Parameters
25: 23.24 Software
§23.24(ii) Real Argument
§23.24(iii) Complex Argument
26: 13.7 Asymptotic Expansions for Large Argument
§13.7 Asymptotic Expansions for Large Argument
§13.7(ii) Error Bounds
§13.7(iii) Exponentially-Improved Expansion
13.7.13 R m , n ( a , b , z ) = { O ( e | z | z m ) , | ph z | π , O ( e z z m ) , π | ph z | 5 2 π δ .
For extensions to hyperasymptotic expansions see Olde Daalhuis and Olver (1995a).
27: Bibliography T
  • I. J. Thompson and A. R. Barnett (1985) COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments. Comput. Phys. Comm. 36 (4), pp. 363–372.
  • I. J. Thompson (2004) Erratum to “COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments. Comput. Phys. Comm. 159 (3), pp. 241–242.
  • I. Thompson (2013) Algorithm 926: incomplete gamma functions with negative arguments. ACM Trans. Math. Software 39 (2), pp. Art. 14, 9.
  • J. Todd (1954) Evaluation of the exponential integral for large complex arguments. J. Research Nat. Bur. Standards 52, pp. 313–317.
  • R. F. Tooper and J. Mark (1968) Simplified calculation of Ei ( x ) for positive arguments, and a short table of Shi ( x ) . Math. Comp. 22 (102), pp. 448–449.
  • 28: 19.4 Derivatives and Differential Equations
    19.4.9 ( k k 2 D k 2 + k 2 D k + k ) E ( ϕ , k ) = k sin ϕ cos ϕ 1 k 2 sin 2 ϕ .
    If ϕ = π / 2 , then these two equations become hypergeometric differential equations (15.10.1) for K ( k ) and E ( k ) . …
    29: 10.77 Software
    §10.77(ii) Bessel Functions–Real Argument and Integer or Half-Integer Order (including Spherical Bessel Functions)
    §10.77(iii) Bessel Functions–Real Order and Argument
    §10.77(vi) Bessel Functions–Imaginary Order and Real Argument
    §10.77(vii) Bessel Functions–Complex Order and Real Argument
    §10.77(viii) Bessel Functions–Complex Order and Argument
    30: Bibliography N
  • M. Nardin, W. F. Perger, and A. Bhalla (1992a) Algorithm 707: CONHYP: A numerical evaluator of the confluent hypergeometric function for complex arguments of large magnitudes. ACM Trans. Math. Software 18 (3), pp. 345–349.
  • M. Nardin, W. F. Perger, and A. Bhalla (1992b) Numerical evaluation of the confluent hypergeometric function for complex arguments of large magnitudes. J. Comput. Appl. Math. 39 (2), pp. 193–200.
  • G. Nemes (2015b) On the large argument asymptotics of the Lommel function via Stieltjes transforms. Asymptot. Anal. 91 (3-4), pp. 265–281.
  • G. Nemes (2017b) Error Bounds for the Large-Argument Asymptotic Expansions of the Hankel and Bessel Functions. Acta Appl. Math. 150, pp. 141–177.
  • G. Nemes (2018) Error bounds for the large-argument asymptotic expansions of the Lommel and allied functions. Stud. Appl. Math. 140 (4), pp. 508–541.