About the Project

argument ±1

AdvancedHelp

(0.007 seconds)

31—40 of 137 matching pages

31: 35.2 Laplace Transform
β–Ί β–Ί
35.2.3 f 1 f 2 ⁑ ( 𝐓 ) = 𝟎 < 𝐗 < 𝐓 f 1 ⁑ ( 𝐓 𝐗 ) ⁒ f 2 ⁑ ( 𝐗 ) ⁒ d 𝐗 .
32: 9.18 Tables
β–Ί
  • Miller (1946) tabulates Ai ⁑ ( x ) , Ai ⁑ ( x ) for x = 20 ⁒ ( .01 ) ⁒ 2 ; log 10 ⁑ Ai ⁑ ( x ) , Ai ⁑ ( x ) / Ai ⁑ ( x ) for x = 0 ⁒ ( .1 ) ⁒ 25 ⁒ ( 1 ) ⁒ 75 ; Bi ⁑ ( x ) , Bi ⁑ ( x ) for x = 10 ⁒ ( .1 ) ⁒ 2.5 ; log 10 ⁑ Bi ⁑ ( x ) , Bi ⁑ ( x ) / Bi ⁑ ( x ) for x = 0 ⁒ ( .1 ) ⁒ 10 ; M ⁑ ( x ) , N ⁑ ( x ) , ΞΈ ⁑ ( x ) , Ο• ⁑ ( x ) (respectively F ⁑ ( x ) , G ⁑ ( x ) , Ο‡ ⁑ ( x ) , ψ ⁑ ( x ) ) for x = 80 ⁒ ( 1 ) 30 ⁒ ( .1 ) ⁒ 0 . Precision is generally 8D; slightly less for some of the auxiliary functions. Extracts from these tables are included in Abramowitz and Stegun (1964, Chapter 10), together with some auxiliary functions for large arguments.

  • 33: 34.5 Basic Properties: 6 ⁒ j Symbol
    β–ΊIf any lower argument in a 6 ⁒ j symbol is 0 , 1 2 , or 1 , then the 6 ⁒ j symbol has a simple algebraic form. …
    34: 19.8 Quadratic Transformations
    β–Ί β–Ί
    35: Bibliography G
    β–Ί
  • A. Gil, D. Ruiz-Antolín, J. Segura, and N. M. Temme (2016) Algorithm 969: computation of the incomplete gamma function for negative values of the argument. ACM Trans. Math. Softw. 43 (3), pp. 26:1–26:9.
  • 36: 19.6 Special Cases
    37: 19.10 Relations to Other Functions
    38: 6.1 Special Notation
    β–ΊUnless otherwise noted, primes indicate derivatives with respect to the argument. β–ΊThe main functions treated in this chapter are the exponential integrals Ei ⁑ ( x ) , E 1 ⁑ ( z ) , and Ein ⁑ ( z ) ; the logarithmic integral li ⁑ ( x ) ; the sine integrals Si ⁑ ( z ) and si ⁑ ( z ) ; the cosine integrals Ci ⁑ ( z ) and Cin ⁑ ( z ) . …
    39: 5.22 Tables
    β–ΊAbramowitz and Stegun (1964, Chapter 6) tabulates Ξ“ ⁑ ( x ) , ln ⁑ Ξ“ ⁑ ( x ) , ψ ⁑ ( x ) , and ψ ⁑ ( x ) for x = 1 ⁒ ( .005 ) ⁒ 2 to 10D; ψ ′′ ⁑ ( x ) and ψ ( 3 ) ⁑ ( x ) for x = 1 ⁒ ( .01 ) ⁒ 2 to 10D; Ξ“ ⁑ ( n ) , 1 / Ξ“ ⁑ ( n ) , Ξ“ ⁑ ( n + 1 2 ) , ψ ⁑ ( n ) , log 10 ⁑ Ξ“ ⁑ ( n ) , log 10 ⁑ Ξ“ ⁑ ( n + 1 3 ) , log 10 ⁑ Ξ“ ⁑ ( n + 1 2 ) , and log 10 ⁑ Ξ“ ⁑ ( n + 2 3 ) for n = 1 ⁒ ( 1 ) ⁒ 101 to 8–11S; Ξ“ ⁑ ( n + 1 ) for n = 100 ⁒ ( 100 ) ⁒ 1000 to 20S. Zhang and Jin (1996, pp. 67–69 and 72) tabulates Ξ“ ⁑ ( x ) , 1 / Ξ“ ⁑ ( x ) , Ξ“ ⁑ ( x ) , ln ⁑ Ξ“ ⁑ ( x ) , ψ ⁑ ( x ) , ψ ⁑ ( x ) , ψ ⁑ ( x ) , and ψ ⁑ ( x ) for x = 0 ⁒ ( .1 ) ⁒ 5 to 8D or 8S; Ξ“ ⁑ ( n + 1 ) for n = 0 ⁒ ( 1 ) ⁒ 100 ⁒ ( 10 ) ⁒ 250 ⁒ ( 50 ) ⁒ 500 ⁒ ( 100 ) ⁒ 3000 to 51S. … β–ΊAbramov (1960) tabulates ln ⁑ Ξ“ ⁑ ( x + i ⁒ y ) for x = 1 ( .01 ) 2 , y = 0 ( .01 ) 4 to 6D. Abramowitz and Stegun (1964, Chapter 6) tabulates ln ⁑ Ξ“ ⁑ ( x + i ⁒ y ) for x = 1 ( .1 ) 2 , y = 0 ( .1 ) 10 to 12D. This reference also includes ψ ⁑ ( x + i ⁒ y ) for the same arguments to 5D. …
    40: Bibliography D
    β–Ί
  • T. M. Dunster (1990a) Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter. SIAM J. Math. Anal. 21 (4), pp. 995–1018.