About the Project

area of triangle

AdvancedHelp

(0.001 seconds)

31—40 of 47 matching pages

31: 23.22 Methods of Computation
  • (a)

    In the general case, given by c d 0 , we compute the roots α , β , γ , say, of the cubic equation 4 t 3 c t d = 0 ; see §1.11(iii). These roots are necessarily distinct and represent e 1 , e 2 , e 3 in some order.

    If c and d are real, and the discriminant is positive, that is c 3 27 d 2 > 0 , then e 1 , e 2 , e 3 can be identified via (23.5.1), and k 2 , k 2 obtained from (23.6.16).

    If c 3 27 d 2 < 0 , or c and d are not both real, then we label α , β , γ so that the triangle with vertices α , β , γ is positively oriented and [ α , γ ] is its longest side (chosen arbitrarily if there is more than one). In particular, if α , β , γ are collinear, then we label them so that β is on the line segment ( α , γ ) . In consequence, k 2 = ( β γ ) / ( α γ ) , k 2 = ( α β ) / ( α γ ) satisfy k 2 0 k 2 (with strict inequality unless α , β , γ are collinear); also | k 2 | , | k 2 | 1 .

    Finally, on taking the principal square roots of k 2 and k 2 we obtain values for k and k that lie in the 1st and 4th quadrants, respectively, and 2 ω 1 , 2 ω 3 are given by

    23.22.1 2 ω 1 M ( 1 , k ) = 2 i ω 3 M ( 1 , k ) = π 3 c ( 2 + k 2 k 2 ) ( k 2 k 2 ) d ( 1 k 2 k 2 ) ,

    where M denotes the arithmetic-geometric mean (see §§19.8(i) and 22.20(ii)). This process yields 2 possible pairs ( 2 ω 1 , 2 ω 3 ), corresponding to the 2 possible choices of the square root.

  • (c)

    If c = 0 , then

    23.22.3 2 ω 1 = 2 e π i / 3 ω 3 = ( Γ ( 1 3 ) ) 3 2 π d 1 / 6 .

    There are 6 possible pairs ( 2 ω 1 , 2 ω 3 ), corresponding to the 6 rotations of a lattice of equilateral triangles. The equianharmonic case occurs when d > 0 and ω 1 > 0 .

  • 32: 34.3 Basic Properties: 3 j Symbol
    Then assuming the triangle conditions are satisfied … Again it is assumed that in (34.3.7) the triangle conditions are satisfied. … In the following three equations it is assumed that the triangle conditions are satisfied by each 3 j symbol. …
    33: 16.15 Integral Representations and Integrals
    where Δ is the triangle defined by u 0 , v 0 , u + v 1 . …
    34: 34.4 Definition: 6 j Symbol
    Except in degenerate cases the combination of the triangle inequalities for the four 3 j symbols in (34.4.1) is equivalent to the existence of a tetrahedron (possibly degenerate) with edges of lengths j 1 , j 2 , j 3 , l 1 , l 2 , l 3 ; see Figure 34.4.1. …
    35: 34.5 Basic Properties: 6 j Symbol
    In the following equations it is assumed that the triangle inequalities are satisfied and that J is again defined by (34.3.4). … In the following equation it is assumed that the triangle conditions are satisfied. …
    36: Software Index
  • Software Associated with Books.

    An increasing number of published books have included digital media containing software described in the book. Often, the collection of software covers a fairly broad area. Such software is typically developed by the book author. While it is not professionally packaged, it often provides a useful tool for readers to experiment with the concepts discussed in the book. The software itself is typically not formally supported by its authors.

  • The following are web-based software repositories with significant holdings in the area of special functions. …
    37: 1.9 Calculus of a Complex Variable
    Triangle Inequality
    38: 28.33 Physical Applications
    We shall derive solutions to the uniform, homogeneous, loss-free, and stretched elliptical ring membrane with mass ρ per unit area, and radial tension τ per unit arc length. …
    39: 23.5 Special Lattices
    The rhombus 0 , 2 ω 1 2 ω 3 , 2 ω 1 , 2 ω 3 can be regarded as the union of two equilateral triangles: see Figure 23.5.2. …
    40: Bibliography G
  • A. Gervois and H. Navelet (1984) Some integrals involving three Bessel functions when their arguments satisfy the triangle inequalities. J. Math. Phys. 25 (11), pp. 3350–3356.