About the Project

analytically%20continued

AdvancedHelp

(0.001 seconds)

4 matching pages

1: 18.40 Methods of Computation
The problem of moments is simply stated and the early work of Stieltjes, Markov, and Chebyshev on this problem was the origin of the understanding of the importance of both continued fractions and OP’s in many areas of analysis. …
Stieltjes Inversion via (approximate) Analytic Continuation
The question is then: how is this possible given only F N ( z ) , rather than F ( z ) itself? F N ( z ) often converges to smooth results for z off the real axis for z at a distance greater than the pole spacing of the x n , this may then be followed by approximate numerical analytic continuation via fitting to lower order continued fractions (either Padé, see §3.11(iv), or pointwise continued fraction approximants, see Schlessinger (1968, Appendix)), to F N ( z ) and evaluating these on the real axis in regions of higher pole density that those of the approximating function. Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . … In what follows this is accomplished in two ways: i) via the Lagrange interpolation of §3.3(i) ; and ii) by constructing a pointwise continued fraction, or PWCF, as follows: …
2: Bibliography W
  • P. L. Walker (2003) The analyticity of Jacobian functions with respect to the parameter k . Proc. Roy. Soc. London Ser A 459, pp. 2569–2574.
  • H. S. Wall (1948) Analytic Theory of Continued Fractions. D. Van Nostrand Company, Inc., New York.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • E. T. Whittaker (1964) A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. 4th edition, Cambridge University Press, Cambridge.
  • 3: Bibliography M
  • A. I. Markushevich (1983) The Theory of Analytic Functions: A Brief Course. “Mir”, Moscow.
  • S. C. Milne (2002) Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6 (1), pp. 7–149.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • C. Mortici (2011a) A new Stirling series as continued fraction. Numer. Algorithms 56 (1), pp. 17–26.
  • C. Mortici (2013a) A continued fraction approximation of the gamma function. J. Math. Anal. Appl. 402 (2), pp. 405–410.
  • 4: Bibliography R
  • H. Rademacher (1973) Topics in Analytic Number Theory. Springer-Verlag, New York.
  • Yu. L. Ratis and P. Fernández de Córdoba (1993) A code to calculate (high order) Bessel functions based on the continued fractions method. Comput. Phys. Comm. 76 (3), pp. 381–388.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.