About the Project

Wronskian

AdvancedHelp

(0.000 seconds)

21—30 of 34 matching pages

21: 32.10 Special Function Solutions
where τ n ( z ) is the n × n Wronskian determinant
32.10.9 τ n ( z ) = 𝒲 { ϕ ( z ) , ϕ ( z ) , , ϕ ( n 1 ) ( z ) } ,
22: 10.45 Functions of Imaginary Order
23: 30.11 Radial Spheroidal Wave Functions
§30.11(iv) Wronskian
30.11.7 𝒲 { S n m ( 1 ) ( z , γ ) , S n m ( 2 ) ( z , γ ) } = 1 γ ( z 2 1 ) .
24: 15.10 Hypergeometric Differential Equation
Singularity z = 0
15.10.3 𝒲 { f 1 ( z ) , f 2 ( z ) } = ( 1 c ) z c ( 1 z ) c a b 1 .
Singularity z = 1
15.10.5 𝒲 { f 1 ( z ) , f 2 ( z ) } = ( a + b c ) z c ( 1 z ) c a b 1 .
Singularity z =
25: 33.23 Methods of Computation
Combined with the Wronskians (33.2.12), the values of F , G , and their derivatives can be extracted. …
26: 10.24 Functions of Imaginary Order
27: 14.20 Conical (or Mehler) Functions
§14.20(i) Definitions and Wronskians
14.20.4 𝒲 { 𝖯 1 2 + i τ μ ( x ) , 𝖯 1 2 + i τ μ ( x ) } = 2 | Γ ( μ + 1 2 + i τ ) | 2 ( 1 x 2 ) .
14.20.5 𝒲 { 𝖯 1 2 + i τ μ ( x ) , 𝖰 ^ 1 2 + i τ μ ( x ) } = π ( e τ π cos 2 ( μ π ) + sinh ( τ π ) ) | Γ ( μ + 1 2 + i τ ) | 2 ( cosh 2 ( τ π ) sin 2 ( μ π ) ) ( 1 x 2 ) ,
14.20.6 P 1 2 + i τ μ ( x ) = i e μ π i sinh ( τ π ) | Γ ( μ + 1 2 + i τ ) | 2 ( Q 1 2 + i τ μ ( x ) Q 1 2 i τ μ ( x ) ) , τ 0 .
28: 18.36 Miscellaneous Polynomials
18.36.9 H ^ n + 3 ( x ) = ( 4 x 2 + 2 ) H n + 1 ( x ) + 8 x H n ( x ) π 1 / 4 2 n + 1 ( n + 3 ) n ! = 𝒲 { H 1 ( x ) , H 2 ( x ) , H n + 3 ( x ) } π 1 / 4 2 n + 7 ( n + 1 ) ( n + 2 ) ( n + 3 ) ! , n = 0 , 1 , ,
29: 12.14 The Function W ( a , x )
§12.14(ii) Values at z = 0 and Wronskian
12.14.3 𝒲 { W ( a , x ) , W ( a , x ) } = 1 .
30: 31.8 Solutions via Quadratures
Lastly, λ j , j = 1 , 2 , , 2 g + 1 , are the zeros of the Wronskian of w + ( 𝐦 ; λ ; z ) and w ( 𝐦 ; λ ; z ) . …