About the Project

Weber function

AdvancedHelp

(0.005 seconds)

1—10 of 69 matching pages

1: 11.10 Anger–Weber Functions
§11.10 Anger–Weber Functions
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 11.10.1: Anger function 𝐉 Ξ½ ⁑ ( x ) for 8 x 8 and Ξ½ = 0 , 1 2 , 1 , 3 2 . Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 11.10.2: Weber function 𝐄 Ξ½ ⁑ ( x ) for 8 x 8 and Ξ½ = 0 , 1 2 , 1 , 3 2 . Magnify
β–Ί
β–Ί
See accompanying text
β–Ί
Figure 11.10.3: Anger function 𝐉 Ξ½ ⁑ ( x ) for 10 x 10 and 0 Ξ½ 5 . Magnify 3D Help
β–Ί
β–Ί
See accompanying text
β–Ί
Figure 11.10.4: Weber function 𝐄 Ξ½ ⁑ ( x ) for 10 x 10 and 0 Ξ½ 5 . Magnify 3D Help
2: 11.1 Special Notation
§11.1 Special Notation
β–ΊFor the functions J Ξ½ ⁑ ( z ) , Y Ξ½ ⁑ ( z ) , H Ξ½ ( 1 ) ⁑ ( z ) , H Ξ½ ( 2 ) ⁑ ( z ) , I Ξ½ ⁑ ( z ) , and K Ξ½ ⁑ ( z ) see §§10.2(ii), 10.25(ii). β–ΊThe functions treated in this chapter are the Struve functions 𝐇 Ξ½ ⁑ ( z ) and 𝐊 Ξ½ ⁑ ( z ) , the modified Struve functions 𝐋 Ξ½ ⁑ ( z ) and 𝐌 Ξ½ ⁑ ( z ) , the Lommel functions s ΞΌ , Ξ½ ⁑ ( z ) and S ΞΌ , Ξ½ ⁑ ( z ) , the Anger function 𝐉 Ξ½ ⁑ ( z ) , the Weber function 𝐄 Ξ½ ⁑ ( z ) , and the associated Anger–Weber function 𝐀 Ξ½ ⁑ ( z ) .
3: 11.14 Tables
β–Ί
§11.14(iv) Anger–Weber Functions
β–Ί
§11.14(v) Incomplete Functions
β–Ί
  • Agrest and Maksimov (1971, Chapter 11) defines incomplete Struve, Anger, and Weber functions and includes tables of an incomplete Struve function 𝐇 n ⁑ ( x , Ξ± ) for n = 0 , 1 , x = 0 ⁒ ( .2 ) ⁒ 10 , and Ξ± = 0 ⁒ ( .2 ) ⁒ 1.4 , 1 2 ⁒ Ο€ , together with surface plots.

  • 4: 11.13 Methods of Computation
    β–Ί
    §11.13(i) Introduction
    β–ΊThe treatment of Lommel and Anger–Weber functions is similar. … β–ΊSee §3.6 for implementation of these methods, and with the Weber function 𝐄 n ⁑ ( x ) as an example.
    5: 11.16 Software
    β–Ί
    §11.16(v) Anger and Weber Functions
    β–Ί
    §11.16(vi) Integrals of Anger and Weber Functions
    6: 11.11 Asymptotic Expansions of Anger–Weber Functions
    §11.11 Asymptotic Expansions of Anger–Weber Functions
    β–Ί
    §11.11(i) Large | z | , Fixed Ξ½
    β–Ί β–Ί
    §11.11(ii) Large | Ξ½ | , Fixed z
    β–Ί
    11.11.17 𝐀 Ξ½ ⁑ ( Ξ½ + a ⁒ Ξ½ 1 / 3 ) = 2 1 / 3 ⁒ Ξ½ 1 / 3 ⁒ Hi ⁑ ( 2 1 / 3 ⁒ a ) + O ⁑ ( Ξ½ 1 ) ,
    7: 12.1 Special Notation
    β–ΊUnless otherwise noted, primes indicate derivatives with respect to the variable, and fractional powers take their principal values. β–ΊThe main functions treated in this chapter are the parabolic cylinder functions (PCFs), also known as Weber parabolic cylinder functions: U ⁑ ( a , z ) , V ⁑ ( a , z ) , U ¯ ⁑ ( a , z ) , and W ⁑ ( a , z ) . …
    8: 3.6 Linear Difference Equations
    β–Ί
    Example 2. Weber Function
    β–ΊThe Weber function 𝐄 n ⁑ ( 1 ) satisfies … β–Ί
    3.6.15 𝐄 2 ⁒ n ⁑ ( 1 ) 2 ( 4 ⁒ n 2 1 ) ⁒ Ο€ ,
    β–Ί
    3.6.16 𝐄 2 ⁒ n + 1 ⁑ ( 1 ) 2 ( 2 ⁒ n + 1 ) ⁒ Ο€ ;
    β–Ί
    Table 3.6.1: Weber function w n = 𝐄 n ⁑ ( 1 ) computed by Olver’s algorithm.
    β–Ί β–Ίβ–Ί
    n p n e n e n / ( p n ⁒ p n + 1 ) w n
    β–Ί
    9: 10.58 Zeros
    §10.58 Zeros
    β–Ί
    b n , m = y n + 1 2 , m ,
    β–Ί
    𝗒 n ⁑ ( b n , m ) = Ο€ 2 ⁒ y n + 1 2 , m ⁒ Y n + 1 2 ⁑ ( y n + 1 2 , m ) .
    10: Bibliography N
    β–Ί
  • G. Nemes (2014b) The resurgence properties of the large order asymptotics of the Anger-Weber function I. J. Class. Anal. 4 (1), pp. 1–39.
  • β–Ί
  • G. Nemes (2014c) The resurgence properties of the large order asymptotics of the Anger-Weber function II. J. Class. Anal. 4 (2), pp. 121–147.