About the Project

Stokes%20phenomenon

AdvancedHelp

(0.002 seconds)

1—10 of 112 matching pages

1: 36.5 Stokes Sets
§36.5 Stokes Sets
§36.5(i) Definitions
§36.5(ii) Cuspoids
Elliptic Umbilic Stokes Set (Codimension three)
§36.5(iv) Visualizations
2: Bibliography P
  • R. B. Paris and A. D. Wood (1995) Stokes phenomenon demystified. Bull. Inst. Math. Appl. 31 (1-2), pp. 21–28.
  • R. B. Paris (1992a) Smoothing of the Stokes phenomenon for high-order differential equations. Proc. Roy. Soc. London Ser. A 436, pp. 165–186.
  • R. B. Paris (1992b) Smoothing of the Stokes phenomenon using Mellin-Barnes integrals. J. Comput. Appl. Math. 41 (1-2), pp. 117–133.
  • R. B. Paris (2005b) The Stokes phenomenon associated with the Hurwitz zeta function ζ ( s , a ) . Proc. Roy. Soc. London Ser. A 461, pp. 297–304.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • 3: 2.11 Remainder Terms; Stokes Phenomenon
    §2.11 Remainder Terms; Stokes Phenomenon
    §2.11(iv) Stokes Phenomenon
    That the change in their forms is discontinuous, even though the function being approximated is analytic, is an example of the Stokes phenomenon. Where should the change-over take place? Can it be accomplished smoothly? … For higher-order Stokes phenomena see Olde Daalhuis (2004b) and Howls et al. (2004). …
    4: 7.20 Mathematical Applications
    For applications of the complementary error function in uniform asymptotic approximations of integrals—saddle point coalescing with a pole or saddle point coalescing with an endpoint—see Wong (1989, Chapter 7), Olver (1997b, Chapter 9), and van der Waerden (1951). The complementary error function also plays a ubiquitous role in constructing exponentially-improved asymptotic expansions and providing a smooth interpretation of the Stokes phenomenon; see §§2.11(iii) and 2.11(iv). …
    5: 8.22 Mathematical Applications
    8.22.1 F p ( z ) = Γ ( p ) 2 π z 1 p E p ( z ) = Γ ( p ) 2 π Γ ( 1 p , z ) ,
    plays a fundamental role in re-expansions of remainder terms in asymptotic expansions, including exponentially-improved expansions and a smooth interpretation of the Stokes phenomenon. …
    6: Bibliography I
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • A. R. Its and A. A. Kapaev (2003) Quasi-linear Stokes phenomenon for the second Painlevé transcendent. Nonlinearity 16 (1), pp. 363–386.
  • 7: 10.46 Generalized and Incomplete Bessel Functions; Mittag-Leffler Function
    For exponentially-improved asymptotic expansions in the same circumstances, together with smooth interpretations of the corresponding Stokes phenomenon (§§2.11(iii)2.11(v)) see Wong and Zhao (1999b) when ρ > 0 , and Wong and Zhao (1999a) when 1 < ρ < 0 . … This reference includes exponentially-improved asymptotic expansions for E a , b ( z ) when | z | , together with a smooth interpretation of Stokes phenomena. …
    8: Bibliography K
  • A. A. Kapaev (1991) Essential singularity of the Painlevé function of the second kind and the nonlinear Stokes phenomenon. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 187, pp. 139–170 (Russian).
  • A. A. Kapaev (2004) Quasi-linear Stokes phenomenon for the Painlevé first equation. J. Phys. A 37 (46), pp. 11149–11167.
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • 9: 6.16 Mathematical Applications
    §6.16(i) The Gibbs Phenomenon
    This nonuniformity of convergence is an illustration of the Gibbs phenomenon. …
    See accompanying text
    Figure 6.16.1: Graph of S n ( x ) , n = 250 , 0.1 x 0.1 , illustrating the Gibbs phenomenon. Magnify
    See accompanying text
    Figure 6.16.2: The logarithmic integral li ( x ) , together with vertical bars indicating the value of π ( x ) for x = 10 , 20 , , 1000 . Magnify
    10: Bibliography B
  • M. V. Berry and C. J. Howls (1990) Stokes surfaces of diffraction catastrophes with codimension three. Nonlinearity 3 (2), pp. 281–291.
  • M. V. Berry and C. J. Howls (1994) Overlapping Stokes smoothings: Survival of the error function and canonical catastrophe integrals. Proc. Roy. Soc. London Ser. A 444, pp. 201–216.
  • M. V. Berry (1989) Uniform asymptotic smoothing of Stokes’s discontinuities. Proc. Roy. Soc. London Ser. A 422, pp. 7–21.
  • M. V. Berry (1991) Infinitely many Stokes smoothings in the gamma function. Proc. Roy. Soc. London Ser. A 434, pp. 465–472.
  • W. G. C. Boyd (1990b) Stieltjes transforms and the Stokes phenomenon. Proc. Roy. Soc. London Ser. A 429, pp. 227–246.