About the Project

Stokes%20multipliers

AdvancedHelp

(0.002 seconds)

11—20 of 129 matching pages

11: 20 Theta Functions
Chapter 20 Theta Functions
12: 8.22 Mathematical Applications
8.22.1 F p ( z ) = Γ ( p ) 2 π z 1 p E p ( z ) = Γ ( p ) 2 π Γ ( 1 p , z ) ,
plays a fundamental role in re-expansions of remainder terms in asymptotic expansions, including exponentially-improved expansions and a smooth interpretation of the Stokes phenomenon. …
13: 10.46 Generalized and Incomplete Bessel Functions; Mittag-Leffler Function
For exponentially-improved asymptotic expansions in the same circumstances, together with smooth interpretations of the corresponding Stokes phenomenon (§§2.11(iii)2.11(v)) see Wong and Zhao (1999b) when ρ > 0 , and Wong and Zhao (1999a) when 1 < ρ < 0 . … This reference includes exponentially-improved asymptotic expansions for E a , b ( z ) when | z | , together with a smooth interpretation of Stokes phenomena. …
14: Bibliography D
  • C. de la Vallée Poussin (1896a) Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction ζ ( s ) de Riemann et les nombres premiers en général, suivi d’un Appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Sci. Bruxelles 20, pp. 183–256 (French).
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • T. M. Dunster (1996b) Asymptotics of the generalized exponential integral, and error bounds in the uniform asymptotic smoothing of its Stokes discontinuities. Proc. Roy. Soc. London Ser. A 452, pp. 1351–1367.
  • 15: 3.8 Nonlinear Equations
    For multiple zeros the convergence is linear, but if the multiplicity m is known then quadratic convergence can be restored by multiplying the ratio f ( z n ) / f ( z n ) in (3.8.4) by m . …
    3.8.15 p ( x ) = ( x 1 ) ( x 2 ) ( x 20 )
    Consider x = 20 and j = 19 . We have p ( 20 ) = 19 ! and a 19 = 1 + 2 + + 20 = 210 . …
    3.8.16 d x d a 19 = 20 19 19 ! = ( 4.30 ) × 10 7 .
    16: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • F. Stenger (1993) Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York.
  • A. N. Stokes (1980) A stable quotient-difference algorithm. Math. Comp. 34 (150), pp. 515–519.
  • 17: Bonita V. Saunders
    As the principal developer of graphics for the DLMF, she has collaborated with other NIST mathematicians, computer scientists, and student interns to produce informative graphs and dynamic interactive visualizations of elementary and higher mathematical functions over both simply and multiply connected domains. …
    18: 9.7 Asymptotic Expansions
    Numerical values of χ ( n ) are given in Table 9.7.1 for n = 1 ( 1 ) 20 to 2D.
    Table 9.7.1: χ ( n ) .
    n χ ( n ) n χ ( n ) n χ ( n ) n χ ( n )
    5 2.95 10 4.06 15 4.94 20 5.68
    In (9.7.7) and (9.7.8) the n th error term is bounded in magnitude by the first neglected term multiplied by χ ( n + σ ) + 1 where σ = 1 6 for (9.7.7) and σ = 0 for (9.7.8), provided that n 0 in the first case and n 1 in the second case. … The n th error term in (9.7.5) and (9.7.6) is bounded in magnitude by the first neglected term multiplied by …
    19: 8 Incomplete Gamma and Related
    Functions
    20: 28 Mathieu Functions and Hill’s Equation