About the Project

SL(2,Z)

AdvancedHelp

(0.003 seconds)

21—30 of 803 matching pages

21: 22.1 Special Notation
x , y real variables.
k complementary modulus, k 2 + k 2 = 1 . If k [ 0 , 1 ] , then k [ 0 , 1 ] .
The functions treated in this chapter are the three principal Jacobian elliptic functions sn ( z , k ) , cn ( z , k ) , dn ( z , k ) ; the nine subsidiary Jacobian elliptic functions cd ( z , k ) , sd ( z , k ) , nd ( z , k ) , dc ( z , k ) , nc ( z , k ) , sc ( z , k ) , ns ( z , k ) , ds ( z , k ) , cs ( z , k ) ; the amplitude function am ( x , k ) ; Jacobi’s epsilon and zeta functions ( x , k ) and Z ( x | k ) . … Other notations for sn ( z , k ) are sn ( z | m ) and sn ( z , m ) with m = k 2 ; see Abramowitz and Stegun (1964) and Walker (1996). …
22: 21.6 Products
Also, let 𝐙 be an arbitrary g × h matrix. …
21.6.3 j = 1 h θ ( k = 1 h T j k 𝐳 k | 𝛀 ) = 1 𝒟 g 𝐀 𝒦 𝐁 𝒦 e 2 π i tr [ 1 2 𝐀 T 𝛀 𝐀 + 𝐀 T [ 𝐙 + 𝐁 ] ] j = 1 h θ ( 𝐳 j + 𝛀 𝐚 j + 𝐛 j | 𝛀 ) ,
where 𝐳 j , 𝐚 j , 𝐛 j denote respectively the j th columns of 𝐙 , 𝐀 , 𝐁 . …
21.6.5 𝐓 = 1 2 [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] .
21.6.7 θ [ 1 2 [ 𝐜 1 + 𝐜 2 + 𝐜 3 + 𝐜 4 ] 1 2 [ 𝐝 1 + 𝐝 2 + 𝐝 3 + 𝐝 4 ] ] ( 𝐱 + 𝐲 + 𝐮 + 𝐯 2 | 𝛀 ) θ [ 1 2 [ 𝐜 1 + 𝐜 2 𝐜 3 𝐜 4 ] 1 2 [ 𝐝 1 + 𝐝 2 𝐝 3 𝐝 4 ] ] ( 𝐱 + 𝐲 𝐮 𝐯 2 | 𝛀 ) θ [ 1 2 [ 𝐜 1 𝐜 2 + 𝐜 3 𝐜 4 ] 1 2 [ 𝐝 1 𝐝 2 + 𝐝 3 𝐝 4 ] ] ( 𝐱 𝐲 + 𝐮 𝐯 2 | 𝛀 ) θ [ 1 2 [ 𝐜 1 𝐜 2 𝐜 3 + 𝐜 4 ] 1 2 [ 𝐝 1 𝐝 2 𝐝 3 + 𝐝 4 ] ] ( 𝐱 𝐲 𝐮 + 𝐯 2 | 𝛀 ) = 1 2 g 𝜶 1 2 g / g 𝜷 1 2 g / g e 2 π i 𝜷 [ 𝐜 1 + 𝐜 2 + 𝐜 3 + 𝐜 4 ] θ [ 𝐜 1 + 𝜶 𝐝 1 + 𝜷 ] ( 𝐱 | 𝛀 ) θ [ 𝐜 2 + 𝜶 𝐝 2 + 𝜷 ] ( 𝐲 | 𝛀 ) θ [ 𝐜 3 + 𝜶 𝐝 3 + 𝜷 ] ( 𝐮 | 𝛀 ) θ [ 𝐜 4 + 𝜶 𝐝 4 + 𝜷 ] ( 𝐯 | 𝛀 ) .
23: 18.8 Differential Equations
Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
# f ( x ) A ( x ) B ( x ) C ( x ) λ n
2 ( sin 1 2 x ) α + 1 2 ( cos 1 2 x ) β + 1 2 × P n ( α , β ) ( cos x ) 1 0 1 4 α 2 4 sin 2 1 2 x + 1 4 β 2 4 cos 2 1 2 x ( n + 1 2 ( α + β + 1 ) ) 2
9 e 1 2 x 2 x α + 1 2 L n ( α ) ( x 2 ) 1 0 x 2 + ( 1 4 α 2 ) x 2 4 n + 2 α + 2
12 H n ( x ) 1 2 x 0 2 n
13 e 1 2 x 2 H n ( x ) 1 0 x 2 2 n + 1
Item 11 of Table 18.8.1 yields (18.39.36) for Z = 1 .
24: 18.40 Methods of Computation
Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . … Convergence is O ( N 2 ) . … Here x ( t , N ) is an interpolation of the abscissas x i , N , i = 1 , 2 , , N , that is, x ( i , N ) = x i , N , allowing differentiation by i . …where the coefficients are defined recursively via a 1 = x 1 , N x 2 , N 1 , and …The PWCF x ( t , N ) is a minimally oscillatory algebraic interpolation of the abscissas x i , N , i = 1 , 2 , , N . …
25: 35.5 Bessel Functions of Matrix Argument
35.5.5 𝟎 < 𝐗 < 𝐓 A ν 1 ( 𝐒 1 𝐗 ) | 𝐗 | ν 1 A ν 2 ( 𝐒 2 ( 𝐓 𝐗 ) ) | 𝐓 𝐗 | ν 2 d 𝐗 = | 𝐓 | ν 1 + ν 2 + 1 2 ( m + 1 ) A ν 1 + ν 2 + 1 2 ( m + 1 ) ( ( 𝐒 1 + 𝐒 2 ) 𝐓 ) , ν j , ( ν j ) > 1 , j = 1 , 2 ; 𝐒 1 , 𝐒 2 𝓢 ; 𝐓 𝛀 .
35.5.7 𝛀 A ν 1 ( 𝐓 𝐗 ) B ν 2 ( 𝐒 𝐗 ) | 𝐗 | ν 1 d 𝐗 = 1 A ν 1 + ν 2 ( 𝟎 ) | 𝐒 | ν 2 | 𝐓 + 𝐒 | ( ν 1 + ν 2 + 1 2 ( m + 1 ) ) , ( ν 1 + ν 2 ) > 1 ; 𝐒 , 𝐓 𝛀 .
26: Bibliography E
  • Á. Elbert and A. Laforgia (1994) Interlacing properties of the zeros of Bessel functions. Atti Sem. Mat. Fis. Univ. Modena XLII (2), pp. 525–529.
  • Á. Elbert and A. Laforgia (1997) An upper bound for the zeros of the derivative of Bessel functions. Rend. Circ. Mat. Palermo (2) 46 (1), pp. 123–130.
  • E. B. Elliott (1903) A formula including Legendre’s E K + K E K K = 1 2 π . Messenger of Math. 33, pp. 31–32.
  • F. H. L. Essler, H. Frahm, A. R. Its, and V. E. Korepin (1996) Painlevé transcendent describes quantum correlation function of the X X Z antiferromagnet away from the free-fermion point. J. Phys. A 29 (17), pp. 5619–5626.
  • W. N. Everitt (1982) On the transformation theory of ordinary second-order linear symmetric differential expressions. Czechoslovak Math. J. 32(107) (2), pp. 275–306.
  • 27: 35.6 Confluent Hypergeometric Functions of Matrix Argument
    35.6.2 Ψ ( a ; b ; 𝐓 ) = 1 Γ m ( a ) 𝛀 etr ( 𝐓 𝐗 ) | 𝐗 | a 1 2 ( m + 1 ) | 𝐈 + 𝐗 | b a 1 2 ( m + 1 ) d 𝐗 , ( a ) > 1 2 ( m 1 ) , 𝐓 𝛀 .
    35.6.3 L ν ( γ ) ( 𝐓 ) = Γ m ( γ + ν + 1 2 ( m + 1 ) ) Γ m ( γ + 1 2 ( m + 1 ) ) F 1 1 ( ν γ + 1 2 ( m + 1 ) ; 𝐓 ) , ( γ ) , ( γ + ν ) > 1 .
    35.6.6 B m ( b 1 , b 2 ) | 𝐓 | b 1 + b 2 1 2 ( m + 1 ) F 1 1 ( a 1 + a 2 b 1 + b 2 ; 𝐓 ) = 𝟎 < 𝐗 < 𝐓 | 𝐗 | b 1 1 2 ( m + 1 ) F 1 1 ( a 1 b 1 ; 𝐗 ) | 𝐓 𝐗 | b 2 1 2 ( m + 1 ) F 1 1 ( a 2 b 2 ; 𝐓 𝐗 ) d 𝐗 , ( b 1 ) , ( b 2 ) > 1 2 ( m 1 ) .
    35.6.8 𝛀 | 𝐓 | c 1 2 ( m + 1 ) Ψ ( a ; b ; 𝐓 ) d 𝐓 = Γ m ( c ) Γ m ( a c ) Γ m ( c b + 1 2 ( m + 1 ) ) Γ m ( a ) Γ m ( a b + 1 2 ( m + 1 ) ) , ( a ) > ( c ) + 1 2 ( m 1 ) > m 1 , ( c b ) > 1 .
    28: Bibliography P
  • R. B. Paris (2005a) A Kummer-type transformation for a F 2 2 hypergeometric function. J. Comput. Appl. Math. 173 (2), pp. 379–382.
  • J. B. Parkinson (1969) Optical properties of layer antiferromagnets with K 2 NiF 4 structure. J. Phys. C: Solid State Physics 2 (11), pp. 2012–2021.
  • R. Parnes (1972) Complex zeros of the modified Bessel function K n ( Z ) . Math. Comp. 26 (120), pp. 949–953.
  • B. Pichon (1989) Numerical calculation of the generalized Fermi-Dirac integrals. Comput. Phys. Comm. 55 (2), pp. 127–136.
  • J. L. Powell (1947) Recurrence formulas for Coulomb wave functions. Physical Rev. (2) 72 (7), pp. 626–627.
  • 29: 9.13 Generalized Airy Functions
    and 𝒵 p is any linear combination of the modified Bessel functions I p and e p π i K p 10.25(ii)). … The function on the right-hand side is recessive in the sector ( 2 j 1 ) π / m ph z ( 2 j + 1 ) π / m , and is therefore an essential member of any numerically satisfactory pair of solutions in this region. … where α > 2 and x > 0 . … The integration paths 0 , 1 , 2 , 3 are depicted in Figure 9.13.1. 1 , 2 , 3 are depicted in Figure 9.13.2. …
    30: 35.8 Generalized Hypergeometric Functions of Matrix Argument
    §35.8(iii) F 2 3 Case
    Kummer Transformation
    Let c = b 1 + b 2 a 1 a 2 a 3 . … Let a 1 + a 2 + a 3 + 1 2 ( m + 1 ) = b 1 + b 2 ; one of the a j be a negative integer; ( b 1 a 1 ) , ( b 1 a 2 ) , ( b 1 a 3 ) , ( b 1 a 1 a 2 a 3 ) > 1 2 ( m 1 ) . … Again, let c = b 1 + b 2 a 1 a 2 a 3 . …