About the Project

Rogers–Dougall very well-poised sum

AdvancedHelp

(0.003 seconds)

11—20 of 386 matching pages

11: 17.2 Calculus
17.2.36 j = 0 n ( n j ) ( z ) j = ( 1 z ) n .
17.2.45 0 1 f ( x ) d q x = ( 1 q ) j = 0 f ( q j ) q j ,
17.2.46 0 a f ( x ) d q x = a ( 1 q ) j = 0 f ( a q j ) q j .
provided that j = f ( q j ) q j converges.
§17.2(vi) Rogers–Ramanujan Identities
12: Bibliography
  • G. E. Andrews (1966b) q -identities of Auluck, Carlitz, and Rogers. Duke Math. J. 33 (3), pp. 575–581.
  • G. E. Andrews (1984) Multiple series Rogers-Ramanujan type identities. Pacific J. Math. 114 (2), pp. 267–283.
  • T. M. Apostol (1952) Theorems on generalized Dedekind sums. Pacific J. Math. 2 (1), pp. 1–9.
  • T. M. Apostol (2006) Bernoulli’s power-sum formulas revisited. Math. Gaz. 90 (518), pp. 276–279.
  • R. Askey and G. Gasper (1976) Positive Jacobi polynomial sums. II. Amer. J. Math. 98 (3), pp. 709–737.
  • 13: Bibliography R
  • R. Reynolds and A. Stauffer (2021) Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function. Mathematics 9 (16).
  • M. D. Rogers (2005) Partial fractions expansions and identities for products of Bessel functions. J. Math. Phys. 46 (4), pp. 043509–1–043509–18.
  • H. Rosengren (1999) Another proof of the triple sum formula for Wigner 9 j -symbols. J. Math. Phys. 40 (12), pp. 6689–6691.
  • K. Rottbrand (2000) Finite-sum rules for Macdonald’s functions and Hankel’s symbols. Integral Transform. Spec. Funct. 10 (2), pp. 115–124.
  • 14: 14.18 Sums
    §14.18 Sums
    §14.18(iii) Other Sums
    Dougall’s Expansion
    For collections of sums involving associated Legendre functions, see Hansen (1975, pp. 367–377, 457–460, and 475), Erdélyi et al. (1953a, §3.10), Gradshteyn and Ryzhik (2000, §8.92), Magnus et al. (1966, pp. 178–184), and Prudnikov et al. (1990, §§5.2, 6.5). …
    15: Bibliography B
  • A. Basu and T. M. Apostol (2000) A new method for investigating Euler sums. Ramanujan J. 4 (4), pp. 397–419.
  • R. J. Baxter (1981) Rogers-Ramanujan identities in the hard hexagon model. J. Statist. Phys. 26 (3), pp. 427–452.
  • A. Berkovich and B. M. McCoy (1998) Rogers-Ramanujan Identities: A Century of Progress from Mathematics to Physics. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), pp. 163–172.
  • 16: 17.6 ϕ 1 2 Function
    q -Gauss Sum
    First q -Chu–Vandermonde Sum
    Second q -Chu–Vandermonde Sum
    Andrews–Askey Sum
    Rogers–Fine Identity
    17: Bibliography L
  • J. Lepowsky and R. L. Wilson (1982) A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities. Adv. in Math. 45 (1), pp. 21–72.
  • M. Lerch (1887) Note sur la fonction 𝔎 ( w , x , s ) = k = 0 e 2 k π i x ( w + k ) s . Acta Math. 11 (1-4), pp. 19–24 (French).
  • 18: 15.4 Special Cases
    Dougall’s Bilateral Sum
    15.4.25 n = Γ ( a + n ) Γ ( b + n ) Γ ( c + n ) Γ ( d + n ) = π 2 sin ( π a ) sin ( π b ) Γ ( c + d a b 1 ) Γ ( c a ) Γ ( d a ) Γ ( c b ) Γ ( d b ) .
    19: 10.23 Sums
    §10.23 Sums
    §10.23(i) Multiplication Theorem
    For expansions of products of Bessel functions of the first kind in partial fractions see Rogers (2005). …
    20: 17.7 Special Cases of Higher ϕ s r Functions
    Sum Related to (17.6.4)
    q -Pfaff–Saalschütz Sum
    F. H. Jackson’s q -Analog of Dougall’s F 6 7 ( 1 ) Sum
    Gasper–Rahman q -Analogs of the Karlsson–Minton Sums
    Gosper’s Bibasic Sum