About the Project

Riemann zeta function

AdvancedHelp

(0.010 seconds)

21—30 of 59 matching pages

21: Bibliography Y
  • A. Yu. Yeremin, I. E. Kaporin, and M. K. Kerimov (1985) The calculation of the Riemann zeta function in the complex domain. USSR Comput. Math. and Math. Phys. 25 (2), pp. 111–119.
  • A. Yu. Yeremin, I. E. Kaporin, and M. K. Kerimov (1988) Computation of the derivatives of the Riemann zeta-function in the complex domain. USSR Comput. Math. and Math. Phys. 28 (4), pp. 115–124.
  • 22: 5.7 Series Expansions
    5.7.2 ( k 1 ) c k = γ c k 1 ζ ( 2 ) c k 2 + ζ ( 3 ) c k 3 + ( 1 ) k ζ ( k 1 ) c 1 , k 3 .
    5.7.3 ln Γ ( 1 + z ) = ln ( 1 + z ) + z ( 1 γ ) + k = 2 ( 1 ) k ( ζ ( k ) 1 ) z k k , | z | < 2 .
    5.7.4 ψ ( 1 + z ) = γ + k = 2 ( 1 ) k ζ ( k ) z k 1 , | z | < 1 ,
    5.7.5 ψ ( 1 + z ) = 1 2 z π 2 cot ( π z ) + 1 z 2 1 + 1 γ k = 1 ( ζ ( 2 k + 1 ) 1 ) z 2 k , | z | < 2 , z 0 , ± 1 .
    23: 25.12 Polylogarithms
    The special case z = 1 is the Riemann zeta function: ζ ( s ) = Li s ( 1 ) . … Further properties include
    25.12.12 Li s ( z ) = Γ ( 1 s ) ( ln 1 z ) s 1 + n = 0 ζ ( s n ) ( ln z ) n n ! , s 1 , 2 , 3 , , | ln z | < 2 π ,
    24: 20.9 Relations to Other Functions
    §20.9(iii) Riemann Zeta Function
    25: 27.18 Methods of Computation: Primes
    An analytic approach using a contour integral of the Riemann zeta function25.2(i)) is discussed in Borwein et al. (2000). …
    26: 27.1 Special Notation
    d , k , m , n positive integers (unless otherwise indicated).
    ζ ( s ) Riemann zeta function; see §25.2(i).
    27: 5.15 Polygamma Functions
    5.15.2 ψ ( n ) ( 1 ) = ( 1 ) n + 1 n ! ζ ( n + 1 ) ,
    5.15.3 ψ ( n ) ( 1 2 ) = ( 1 ) n + 1 n ! ( 2 n + 1 1 ) ζ ( n + 1 ) ,
    28: 26.12 Plane Partitions
    26.12.26 pp ( n ) ( ζ ( 3 ) ) 7 / 36 2 11 / 36 ( 3 π ) 1 / 2 n 25 / 36 exp ( 3 ( ζ ( 3 ) ) 1 / 3 ( 1 2 n ) 2 / 3 + ζ ( 1 ) ) ,
    where ζ is the Riemann ζ -function25.2(i)). …
    29: Bibliography K
  • A. A. Karatsuba and S. M. Voronin (1992) The Riemann Zeta-Function. de Gruyter Expositions in Mathematics, Vol. 5, Walter de Gruyter & Co., Berlin.
  • J. Keating (1993) The Riemann Zeta-Function and Quantum Chaology. In Quantum Chaos (Varenna, 1991), Proc. Internat. School of Phys. Enrico Fermi, CXIX, pp. 145–185.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • K. S. Kölbig (1970) Complex zeros of an incomplete Riemann zeta function and of the incomplete gamma function. Math. Comp. 24 (111), pp. 679–696.
  • K. S. Kölbig (1972a) Complex zeros of two incomplete Riemann zeta functions. Math. Comp. 26 (118), pp. 551–565.
  • 30: 24.17 Mathematical Applications
    §24.17(iii) Number Theory
    Bernoulli and Euler numbers and polynomials occur in: number theory via (24.4.7), (24.4.8), and other identities involving sums of powers; the Riemann zeta function and L -series (§25.15, Apostol (1976), and Ireland and Rosen (1990)); arithmetic of cyclotomic fields and the classical theory of Fermat’s last theorem (Ribenboim (1979) and Washington (1997)); p -adic analysis (Koblitz (1984, Chapter 2)). …