About the Project

Regge symmetries

AdvancedHelp

(0.001 seconds)

11—20 of 54 matching pages

11: 34.7 Basic Properties: 9 j Symbol
§34.7(ii) Symmetry
The 9 j symbol has symmetry properties with respect to permutation of columns, permutation of rows, and transposition of rows and columns; these relate 72 independent 9 j symbols. … For further symmetry properties of the 9 j symbol see Edmonds (1974, pp. 102–103) and Varshalovich et al. (1988, §10.4.1). …
12: 33.22 Particle Scattering and Atomic and Molecular Spectra
§33.22(vii) Complex Variables and Parameters
  • Regge poles at complex values of . See for example Takemasa et al. (1979).

  • 13: Bibliography V
  • G. Veneziano (1968) Construction of a crossing-symmetric, Regge-behaved amplitude for linearly rising trajectories. Il Nuovo Cimento A 57 (1), pp. 190–197.
  • 14: 20.11 Generalizations and Analogs
    §20.11(v) Permutation Symmetry
    The importance of these combined theta functions is that sets of twelve equations for the theta functions often can be replaced by corresponding sets of three equations of the combined theta functions, plus permutation symmetry. …
    15: Bibliography N
  • G. Nemes and A. B. Olde Daalhuis (2016) Uniform asymptotic expansion for the incomplete beta function. SIGMA Symmetry Integrability Geom. Methods Appl. 12, pp. 101, 5 pages.
  • M. Noumi and Y. Yamada (1999) Symmetries in the fourth Painlevé equation and Okamoto polynomials. Nagoya Math. J. 153, pp. 53–86.
  • M. Noumi (2004) Painlevé Equations through Symmetry. Translations of Mathematical Monographs, Vol. 223, American Mathematical Society, Providence, RI.
  • 16: 24.4 Basic Properties
    §24.4(ii) Symmetry
    17: 10.73 Physical Applications
    Bessel functions of the first kind, J n ( x ) , arise naturally in applications having cylindrical symmetry in which the physics is described either by Laplace’s equation 2 V = 0 , or by the Helmholtz equation ( 2 + k 2 ) ψ = 0 . … Accordingly, the spherical Bessel functions appear in all problems in three dimensions with spherical symmetry involving the scattering of electromagnetic radiation. …
    18: 36.7 Zeros
    Near z = z n , and for small x and y , the modulus | Ψ ( E ) ( 𝐱 ) | has the symmetry of a lattice with a rhombohedral unit cell that has a mirror plane and an inverse threefold axis whose z and x repeat distances are given by …In the symmetry planes (e. …
    19: Bibliography Z
  • A. S. Zhedanov (1991) “Hidden symmetry” of Askey-Wilson polynomials. Theoret. and Math. Phys. 89 (2), pp. 1146–1157.
  • 20: Bibliography C
  • B. C. Carlson (2004) Symmetry in c, d, n of Jacobian elliptic functions. J. Math. Anal. Appl. 299 (1), pp. 242–253.
  • B. C. Carlson (2011) Permutation symmetry for theta functions. J. Math. Anal. Appl. 378 (1), pp. 42–48.
  • B. C. Carlson (1998) Elliptic Integrals: Symmetry and Symbolic Integration. In Tricomi’s Ideas and Contemporary Applied Mathematics (Rome/Turin, 1997), Atti dei Convegni Lincei, Vol. 147, pp. 161–181.
  • P. A. Clarkson (1991) Nonclassical Symmetry Reductions and Exact Solutions for Physically Significant Nonlinear Evolution Equations. In Nonlinear and Chaotic Phenomena in Plasmas, Solids and Fluids (Edmonton, AB, 1990), W. Rozmus and J. A. Tuszynski (Eds.), pp. 72–79.
  • H. S. Cohl and R. S. Costas-Santos (2020) Multi-Integral Representations for Associated Legendre and Ferrers Functions. Symmetry 12 (10).