About the Project

Pochhammer%20integral

AdvancedHelp

(0.002 seconds)

11—20 of 545 matching pages

11: 17.13 Integrals
§17.13 Integrals
17.13.1 c d ( q x / c ; q ) ( q x / d ; q ) ( a x / c ; q ) ( b x / d ; q ) d q x = ( 1 q ) ( q ; q ) ( a b ; q ) c d ( c / d ; q ) ( d / c ; q ) ( a ; q ) ( b ; q ) ( c + d ) ( b c / d ; q ) ( a d / c ; q ) ,
17.13.2 c d ( q x / c ; q ) ( q x / d ; q ) ( x q α / c ; q ) ( x q β / d ; q ) d q x = Γ q ( α ) Γ q ( β ) Γ q ( α + β ) c d c + d ( c / d ; q ) ( d / c ; q ) ( q β c / d ; q ) ( q α d / c ; q ) .
Ramanujan’s Integrals
Askey (1980) conjectured extensions of the foregoing integrals that are closely related to Macdonald (1982). …
12: 17.2 Calculus
For n = 0 , 1 , 2 , , … … For properties of the function f ( q ) = q 1 / 24 η ( ln q 2 π i ) = ( q ; q ) see §27.14. …
§17.2(v) Integrals
If f ( x ) is continuous at x = 0 , then …
13: 18.25 Wilson Class: Definitions
18.25.2 0 p n ( x ) p m ( x ) w ( x ) d x = h n δ n , m .
18.25.11 ω y = ( α + 1 ) y ( β + δ + 1 ) y ( γ + 1 ) y ( γ + δ + 2 ) y ( α + γ + δ + 1 ) y ( β + γ + 1 ) y ( δ + 1 ) y y ! ,
18.25.12 h n = ( β ) N ( γ + δ + 2 ) N ( β + γ + 1 ) N ( δ + 1 ) N ( n + α + β + 1 ) n n ! ( α + β + 2 ) 2 n ( α + β γ + 1 ) n ( α δ + 1 ) n ( β + 1 ) n ( α + 1 ) n ( β + δ + 1 ) n ( γ + 1 ) n .
18.25.14 ω y = ( 1 ) y ( N ) y ( γ + 1 ) y ( γ + δ + 1 ) 2 ( N + γ + δ + 2 ) y ( δ + 1 ) y y ! ,
18.25.15 h n = n ! ( N n ) ! ( γ + δ + 2 ) N N ! ( γ + 1 ) n ( δ + 1 ) N n .
14: 19.19 Taylor and Related Series
§19.19 Taylor and Related Series
The following two multivariate hypergeometric series apply to each of the integrals (19.16.14)–(19.16.18) and (19.16.20)–(19.16.23): … Then T N has at most one term if N 5 in the series for R F . For R J and R D , T N has at most one term if N 3 , and two terms if N = 4 or 5. …
15: 19.5 Maclaurin and Related Expansions
§19.5 Maclaurin and Related Expansions
An infinite series for ln K ( k ) is equivalent to the infinite product … Series expansions of F ( ϕ , k ) and E ( ϕ , k ) are surveyed and improved in Van de Vel (1969), and the case of F ( ϕ , k ) is summarized in Gautschi (1975, §1.3.2). …
16: 8.20 Asymptotic Expansions of E p ( z )
§8.20 Asymptotic Expansions of E p ( z )
§8.20(i) Large z
Where the sectors of validity of (8.20.2) and (8.20.3) overlap the contribution of the first term on the right-hand side of (8.20.3) is exponentially small compared to the other contribution; compare §2.11(ii). For an exponentially-improved asymptotic expansion of E p ( z ) see §2.11(iii).
§8.20(ii) Large p
17: 17.6 ϕ 1 2 Function
17.6.14 n = 0 ( a ; q ) n ( b ; q 2 ) n z n ( q ; q ) n ( a z b ; q 2 ) n = ( a z , b z ; q 2 ) ( z , a z b ; q 2 ) ϕ 1 2 ( a , b b z ; q 2 , z q ) .
§17.6(v) Integral Representations
17.6.29 ϕ 1 2 ( a , b c ; q , z ) = ( 1 2 π i ) ( a , b ; q ) ( q , c ; q ) i i ( q 1 + ζ , c q ζ ; q ) ( a q ζ , b q ζ ; q ) π ( z ) ζ sin ( π ζ ) d ζ ,
where | z | < 1 , | ph ( z ) | < π , and the contour of integration separates the poles of ( q 1 + ζ , c q ζ ; q ) / sin ( π ζ ) from those of 1 / ( a q ζ , b q ζ ; q ) , and the infimum of the distances of the poles from the contour is positive. …
18: 18.28 Askey–Wilson Class
18.28.4 h 0 = ( a b c d ; q ) ( q , a b , a c , a d , b c , b d , c d ; q ) ,
18.28.5 h n = h 0 ( 1 a b c d q n 1 ) ( q , a b , a c , a d , b c , b d , c d ; q ) n ( 1 a b c d q 2 n 1 ) ( a b c d ; q ) n , n = 1 , 2 , .
18.28.8 1 2 π 0 π Q n ( cos θ ; a , b | q ) Q m ( cos θ ; a , b | q ) | ( e 2 i θ ; q ) ( a e i θ , b e i θ ; q ) | 2 d θ = δ n , m ( q n + 1 , a b q n ; q ) , a , b or a = b ¯ ; a b 1 ; | a | , | b | 1 .
18.28.15 1 2 π 0 π C n ( cos θ ; β | q ) C m ( cos θ ; β | q ) | ( e 2 i θ ; q ) ( β e 2 i θ ; q ) | 2 d θ = ( β , β q ; q ) ( β 2 , q ; q ) ( 1 β ) ( β 2 ; q ) n ( 1 β q n ) ( q ; q ) n δ n , m , 1 < β < 1 .
19: 18.27 q -Hahn Class
In case of unbounded sequences (18.27.2) can be rewritten as a q -integral, see §17.2(v), and more generally Gasper and Rahman (2004, (1.11.2)). …
18.27.14_1 h n = ( a q ) n 1 a b q 2 n + 1 ( q , b q ; q ) n ( a q ; q ) n ( a b q n + 1 ; q ) ( a q ; q ) .
18.27.16 0 L n ( α ) ( x ; q ) L m ( α ) ( x ; q ) x α ( x ; q ) d x = ( q α + 1 ; q ) n ( q ; q ) n q n h 0 ( 1 ) δ n , m , α > 1 ,
18.27.20 0 S n ( q 1 2 x ; q ) S m ( q 1 2 x ; q ) exp ( ( ln x ) 2 2 ln ( q 1 ) ) d x = 2 π q 1 ln ( q 1 ) q n ( q ; q ) n δ n , m .
20: 17.14 Constant Term Identities
17.14.1 ( q ; q ) a 1 + a 2 + + a n ( q ; q ) a 1 ( q ; q ) a 2 ( q ; q ) a n =  coeff. of  x 1 0 x 2 0 x n 0  in  1 j < k n ( x j x k ; q ) a j ( q x k x j ; q ) a k .
17.14.2 n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 q 2 ; q 2 ) ( q ; q 2 ) ( z 1 q ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 q ; q ) = H ( q ) ( q ; q 2 ) ,
17.14.3 n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q 2 ) ( q ; q 2 ) ( z 1 q ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q ) = G ( q ) ( q ; q 2 ) ,
17.14.4 n = 0 q n 2 ( q 2 ; q 2 ) n ( q ; q 2 ) n =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q 2 ) ( q ; q 2 ) ( z 1 ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 2 ; q 4 ) = G ( q 4 ) ( q ; q 2 ) ,
17.14.5 n = 0 q n 2 + 2 n ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( q 2 z 1 ; q 2 ) ( q ; q 2 ) ( z 1 q 2 ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( q 4 z 2 ; q 4 ) = H ( q 4 ) ( q ; q 2 ) .