About the Project

Olver hypergeometric function

AdvancedHelp

(0.013 seconds)

1—10 of 69 matching pages

1: 15.1 Special Notation
2: 15.6 Integral Representations
15.6.1 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 1 t b 1 ( 1 t ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
15.6.2 𝐅 ( a , b ; c ; z ) = Γ ( 1 + b c ) 2 π i Γ ( b ) 0 ( 1 + ) t b 1 ( t 1 ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c b 1 , 2 , 3 , , b > 0 .
15.6.6 𝐅 ( a , b ; c ; z ) = 1 2 π i Γ ( a ) Γ ( b ) i i Γ ( a + t ) Γ ( b + t ) Γ ( t ) Γ ( c + t ) ( z ) t d t , | ph ( z ) | < π ; a , b 0 , 1 , 2 , .
15.6.7 𝐅 ( a , b ; c ; z ) = 1 2 π i Γ ( a ) Γ ( b ) Γ ( c a ) Γ ( c b ) i i Γ ( a + t ) Γ ( b + t ) Γ ( c a b t ) Γ ( t ) ( 1 z ) t d t , | ph ( 1 z ) | < π ; a , b , c a , c b 0 , 1 , 2 , .
15.6.8 𝐅 ( a , b ; c ; z ) = 1 Γ ( c d ) 0 1 𝐅 ( a , b ; d ; z t ) t d 1 ( 1 t ) c d 1 d t , | ph ( 1 z ) | < π ; c > d > 0 .
3: 13.1 Special Notation
The main functions treated in this chapter are the Kummer functions M ( a , b , z ) and U ( a , b , z ) , Olver’s function 𝐌 ( a , b , z ) , and the Whittaker functions M κ , μ ( z ) and W κ , μ ( z ) . …
4: 14.3 Definitions and Hypergeometric Representations
is Olver’s hypergeometric function15.1). …
14.3.15 P ν μ ( x ) = 2 μ ( x 2 1 ) μ / 2 𝐅 ( μ ν , ν + μ + 1 ; μ + 1 ; 1 2 1 2 x ) ,
5: 15.7 Continued Fractions
15.7.1 𝐅 ( a , b ; c ; z ) 𝐅 ( a , b + 1 ; c + 1 ; z ) = t 0 u 1 z t 1 u 2 z t 2 u 3 z t 3 ,
6: 15.15 Sums
15.15.1 𝐅 ( a , b c ; 1 z ) = ( 1 z 0 z ) a s = 0 ( a ) s s ! 𝐅 ( s , b c ; 1 z 0 ) ( 1 z z 0 ) s .
7: 15.14 Integrals
15.14.1 0 x s 1 𝐅 ( a , b c ; x ) d x = Γ ( s ) Γ ( a s ) Γ ( b s ) Γ ( a ) Γ ( b ) Γ ( c s ) , min ( a , b ) > s > 0 .
8: 15.2 Definitions and Analytical Properties
15.2.2 𝐅 ( a , b ; c ; z ) = s = 0 ( a ) s ( b ) s Γ ( c + s ) s ! z s , | z | < 1 ,
15.2.3 𝐅 ( a , b c ; x + i 0 ) 𝐅 ( a , b c ; x i 0 ) = 2 π i Γ ( a ) Γ ( b ) ( x 1 ) c a b 𝐅 ( c a , c b c a b + 1 ; 1 x ) , x > 1 .
15.2.3_5 lim c n F ( a , b ; c ; z ) Γ ( c ) = 𝐅 ( a , b ; n ; z ) = ( a ) n + 1 ( b ) n + 1 ( n + 1 ) ! z n + 1 F ( a + n + 1 , b + n + 1 ; n + 2 ; z ) , n = 0 , 1 , 2 , .
9: 13.10 Integrals
13.10.1 𝐌 ( a , b , z ) d z = 1 a 1 𝐌 ( a 1 , b 1 , z ) ,
13.10.3 0 e z t t b 1 𝐌 ( a , c , k t ) d t = Γ ( b ) z b 𝐅 1 2 ( a , b ; c ; k / z ) , b > 0 , z > max ( k , 0 ) ,
13.10.5 0 e t t b 1 𝐌 ( a , c , t ) d t = Γ ( b ) Γ ( c a b ) Γ ( c a ) Γ ( c b ) , ( c a ) > b > 0 ,
13.10.10 0 t λ 1 𝐌 ( a , b , t ) d t = Γ ( λ ) Γ ( a λ ) Γ ( a ) Γ ( b λ ) , 0 < λ < a ,
13.10.14 0 e t t 1 2 ν 𝐌 ( a , b , t ) J ν ( 2 x t ) d t = x 1 2 ν e x Γ ( b a ) U ( a , a b + ν + 2 , x ) , x > 0 , 1 < ν < 2 ( b a ) 1 2 ,
10: 13.4 Integral Representations
13.4.1 𝐌 ( a , b , z ) = 1 Γ ( a ) Γ ( b a ) 0 1 e z t t a 1 ( 1 t ) b a 1 d t , b > a > 0 ,
13.4.2 𝐌 ( a , b , z ) = 1 Γ ( b c ) 0 1 𝐌 ( a , c , z t ) t c 1 ( 1 t ) b c 1 d t , b > c > 0 ,
13.4.3 𝐌 ( a , b , z ) = z 1 2 1 2 b Γ ( a ) 0 e t t a 1 2 b 1 2 J b 1 ( 2 z t ) d t , a > 0 .
13.4.9 𝐌 ( a , b , z ) = Γ ( 1 + a b ) 2 π i Γ ( a ) 0 ( 1 + ) e z t t a 1 ( t 1 ) b a 1 d t , b a 1 , 2 , 3 , , a > 0 .