About the Project

Olver associated Legendre function

AdvancedHelp

(0.009 seconds)

1—10 of 41 matching pages

1: 14.21 Definitions and Basic Properties
14.21.1 ( 1 z 2 ) d 2 w d z 2 2 z d w d z + ( ν ( ν + 1 ) μ 2 1 z 2 ) w = 0 .
2: 14.24 Analytic Continuation
14.24.1 P ν μ ( z e s π i ) = e s ν π i P ν μ ( z ) + 2 i sin ( ( ν + 1 2 ) s π ) e s π i / 2 cos ( ν π ) Γ ( μ ν ) 𝑸 ν μ ( z ) ,
14.24.2 𝑸 ν μ ( z e s π i ) = ( 1 ) s e s ν π i 𝑸 ν μ ( z ) ,
14.24.4 𝑸 ν , s μ ( z ) = e s μ π i 𝑸 ν μ ( z ) π i sin ( s μ π ) sin ( μ π ) Γ ( ν μ + 1 ) P ν μ ( z ) ,
3: 14.12 Integral Representations
14.12.9 𝑸 n m ( x ) = 1 n ! 0 u ( x ( x 2 1 ) 1 / 2 cosh t ) n cosh ( m t ) d t ,
14.12.11 𝑸 n m ( x ) = ( x 2 1 ) m / 2 2 n + 1 n ! 1 1 ( 1 t 2 ) n ( x t ) n + m + 1 d t ,
14.12.12 𝑸 n m ( x ) = 1 ( n m ) ! P n m ( x ) x d t ( t 2 1 ) ( P n m ( t ) ) 2 , n m .
14.12.13 𝑸 n ( x ) = 1 2 ( n ! ) 1 1 P n ( t ) x t d t .
4: 14.4 Graphics
§14.4(i) Ferrers Functions: 2D Graphs
§14.4(ii) Ferrers Functions: 3D Surfaces
§14.4(iii) Associated Legendre Functions: 2D Graphs
§14.4(iv) Associated Legendre Functions: 3D Surfaces
See accompanying text
Figure 14.4.32: 𝑸 0 μ ( x ) , 0 μ 10 , 1 < x < 10 . Magnify 3D Help
5: 14.19 Toroidal (or Ring) Functions
14.19.5 𝑸 n 1 2 m ( cosh ξ ) = Γ ( n + 1 2 ) Γ ( n + m + 1 2 ) Γ ( n m + 1 2 ) 0 cosh ( m t ) ( cosh ξ + cosh t sinh ξ ) n + ( 1 / 2 ) d t , m < n + 1 2 .
14.19.6 𝑸 1 2 μ ( cosh ξ ) + 2 n = 1 Γ ( μ + n + 1 2 ) Γ ( μ + 1 2 ) 𝑸 n 1 2 μ ( cosh ξ ) cos ( n ϕ ) = ( 1 2 π ) 1 / 2 ( sinh ξ ) μ ( cosh ξ cos ϕ ) μ + ( 1 / 2 ) , μ > 1 2 .
6: 14.9 Connection Formulas
14.9.12 cos ( ν π ) P ν μ ( x ) = 𝑸 ν μ ( x ) Γ ( μ ν ) + 𝑸 ν 1 μ ( x ) Γ ( ν + μ + 1 ) .
14.9.14 𝑸 ν μ ( x ) = 𝑸 ν μ ( x ) ,
14.9.15 2 sin ( μ π ) π 𝑸 ν μ ( x ) = P ν μ ( x ) Γ ( ν + μ + 1 ) P ν μ ( x ) Γ ( ν μ + 1 ) .
14.9.16 𝑸 ν μ ( x ) = ( 1 2 π ) 1 / 2 ( x 2 1 ) 1 / 4 P μ ( 1 / 2 ) ν ( 1 / 2 ) ( x ( x 2 1 ) 1 / 2 ) .
14.9.17 P ν μ ( x ) = ( 2 / π ) 1 / 2 ( x 2 1 ) 1 / 4 𝑸 μ ( 1 / 2 ) ν + ( 1 / 2 ) ( x ( x 2 1 ) 1 / 2 ) .
7: 14.25 Integral Representations
14.25.2 𝑸 ν μ ( z ) = π 1 / 2 ( z 2 1 ) μ / 2 2 μ Γ ( μ + 1 2 ) Γ ( ν μ + 1 ) 0 ( sinh t ) 2 μ ( z + ( z 2 1 ) 1 / 2 cosh t ) ν + μ + 1 d t , ( ν + 1 ) > μ > 1 2 ,
8: 14.3 Definitions and Hypergeometric Representations
14.3.8 P ν m ( x ) = Γ ( ν + m + 1 ) 2 m Γ ( ν m + 1 ) ( x 2 1 ) m / 2 𝐅 ( ν + m + 1 , m ν ; m + 1 ; 1 2 1 2 x ) .
14.3.19 𝑸 ν μ ( x ) = 2 ν Γ ( ν + 1 ) ( x + 1 ) μ / 2 ( x 1 ) ( μ / 2 ) + ν + 1 𝐅 ( ν + 1 , ν + μ + 1 ; 2 ν + 2 ; 2 1 x ) ,
14.3.20 2 sin ( μ π ) π 𝑸 ν μ ( x ) = ( x + 1 ) μ / 2 Γ ( ν + μ + 1 ) ( x 1 ) μ / 2 𝐅 ( ν + 1 , ν ; 1 μ ; 1 2 1 2 x ) ( x 1 ) μ / 2 Γ ( ν μ + 1 ) ( x + 1 ) μ / 2 𝐅 ( ν + 1 , ν ; μ + 1 ; 1 2 1 2 x ) .
9: 14.23 Values on the Cut
14.23.3 𝑸 ν μ ( x ± i 0 ) = e ν π i / 2 π 3 / 2 ( 1 x 2 ) μ / 2 2 ν + 1 ( x 𝐅 ( 1 2 μ 1 2 ν + 1 2 , 1 2 ν + 1 2 μ + 1 ; 3 2 ; x 2 ) Γ ( 1 2 ν 1 2 μ + 1 2 ) Γ ( 1 2 ν + 1 2 μ + 1 2 ) i 𝐅 ( 1 2 μ 1 2 ν , 1 2 ν + 1 2 μ + 1 2 ; 1 2 ; x 2 ) Γ ( 1 2 ν 1 2 μ + 1 ) Γ ( 1 2 ν + 1 2 μ + 1 ) ) .
14.23.5 𝖰 ν μ ( x ) = 1 2 Γ ( ν + μ + 1 ) ( e μ π i / 2 𝑸 ν μ ( x + i 0 ) + e μ π i / 2 𝑸 ν μ ( x i 0 ) ) ,
14.23.6 𝖰 ν μ ( x ) = e μ π i / 2 Γ ( ν + μ + 1 ) 𝑸 ν μ ( x ± i 0 ) ± 1 2 π i e ± μ π i / 2 P ν μ ( x ± i 0 ) .
10: 14.8 Behavior at Singularities
14.8.9 𝑸 ν ( x ) = ln ( x 1 ) 2 Γ ( ν + 1 ) + 1 2 ln 2 γ ψ ( ν + 1 ) Γ ( ν + 1 ) + O ( ( x 1 ) ln ( x 1 ) ) , ν 1 , 2 , 3 , ,
14.8.10 𝑸 n ( x ) ( 1 ) n + 1 ( n 1 ) ! , n = 1 , 2 , 3 , ,
14.8.11 𝑸 ν μ ( x ) Γ ( μ ) 2 Γ ( ν + μ + 1 ) ( 2 x 1 ) μ / 2 , μ > 0 , ν + μ 1 , 2 , 3 , .
14.8.15 𝑸 ν μ ( x ) π 1 / 2 Γ ( ν + 3 2 ) ( 2 x ) ν + 1 , ν 3 2 , 5 2 , 7 2 , ,
14.8.16 𝑸 n ( 1 / 2 ) μ ( x ) π 1 / 2 Γ ( μ + n + 1 2 ) n ! Γ ( μ n + 1 2 ) ( 2 x ) n + ( 1 / 2 ) , n = 1 , 2 , 3 , , μ n + 1 2 0 , 1 , 2 , .