About the Project

Meijer G-function

AdvancedHelp

(0.004 seconds)

11—20 of 20 matching pages

11: Adri B. Olde Daalhuis
12: 10.17 Asymptotic Expansions for Large Argument
10.17.17 R ± ( ν , z ) = ( 1 ) 2 cos ( ν π ) ( k = 0 m 1 ( ± i ) k a k ( ν ) z k G k ( 2 i z ) + R m , ± ( ν , z ) ) ,
13: Richard A. Askey
14: Bibliography F
  • J. L. Fields (1973) Uniform asymptotic expansions of certain classes of Meijer G -functions for a large parameter. SIAM J. Math. Anal. 4 (3), pp. 482–507.
  • J. L. Fields (1983) Uniform asymptotic expansions of a class of Meijer G -functions for a large parameter. SIAM J. Math. Anal. 14 (6), pp. 1204–1253.
  • 15: Bibliography M
  • O. I. Marichev (1984) On the Representation of Meijer’s G -Function in the Vicinity of Singular Unity. In Complex Analysis and Applications ’81 (Varna, 1981), pp. 383–398.
  • C. S. Meijer (1932) Über die asymptotische Entwicklung von 0 i ( arg w μ ) e ν z w sinh z 𝑑 z , ( π 2 < μ < π 2 ) für große Werte von | w | und | ν | . I, II. Proc. Akad. Wet. Amsterdam 35, pp. 1170–1180, 1291–1303 (German).
  • C. S. Meijer (1946) On the G -function. VII, VIII. Nederl. Akad. Wetensch., Proc. 49, pp. 1063–1072, 1165–1175 = Indagationes Math. 8, 661–670, 713–723 (1946).
  • J. W. Meijer and N. H. G. Baken (1987) The exponential integral distribution. Statist. Probab. Lett. 5 (3), pp. 209–211.
  • 16: 11.11 Asymptotic Expansions of Anger–Weber Functions
    11.11.8 𝐀 ν ( λ ν ) 1 π k = 0 ( 2 k ) ! a k ( λ ) ν 2 k + 1 , ν , | ph ν | π δ ,
    11.11.10 𝐀 ν ( λ ν ) 1 π k = 0 ( 2 k ) ! a k ( λ ) ν 2 k + 1 , ν , | ph ν | π δ .
    Error bounds for (11.11.8) and (11.11.10) are given in Meijer (1932) and Nemes (2014b, c). …
    17: Software Index
    18: 16.11 Asymptotic Expansions
    §16.11(i) Formal Series
    §16.11(ii) Expansions for Large Variable
    Here the upper or lower signs are chosen according as z lies in the upper or lower half-plane; in consequence, in the fractional powers (§4.2(iv)) of z e π i its phases are ph z π , respectively. … with the same conventions on the phases of z e π i . … with the same conventions on the phases of z e π i . …
    19: 8.19 Generalized Exponential Integral
    For higher-order generalized exponential integrals see Meijer and Baken (1987) and Milgram (1985).
    20: Bibliography S
  • F. C. Smith (1939b) Relations among the fundamental solutions of the generalized hypergeometric equation when p = q + 1 . II. Logarithmic cases. Bull. Amer. Math. Soc. 45 (12), pp. 927–935.