About the Project

Mathieu functions

AdvancedHelp

(0.008 seconds)

31—40 of 62 matching pages

31: 28.4 Fourier Series
§28.4 Fourier Series
§28.4(ii) Recurrence Relations
§28.4(iii) Normalization
§28.4(v) Change of Sign of q
§28.4(vi) Behavior for Small q
32: 28.7 Analytic Continuation of Eigenvalues
As functions of q , a n ( q ) and b n ( q ) can be continued analytically in the complex q -plane. … All the a 2 n ( q ) , n = 0 , 1 , 2 , , can be regarded as belonging to a complete analytic function (in the large). …
28.7.4 n = 0 ( b 2 n + 2 ( q ) ( 2 n + 2 ) 2 ) = 0 .
33: 28.25 Asymptotic Expansions for Large z
§28.25 Asymptotic Expansions for Large z
28.25.1 M ν ( 3 , 4 ) ( z , h ) e ± i ( 2 h cosh z ( 1 2 ν + 1 4 ) π ) ( π h ( cosh z + 1 ) ) 1 2 m = 0 D m ± ( 4 i h ( cosh z + 1 ) ) m ,
34: Bibliography N
  • D. Naylor (1984) On simplified asymptotic formulas for a class of Mathieu functions. SIAM J. Math. Anal. 15 (6), pp. 1205–1213.
  • D. Naylor (1987) On a simplified asymptotic formula for the Mathieu function of the third kind. SIAM J. Math. Anal. 18 (6), pp. 1616–1629.
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • National Bureau of Standards (1967) Tables Relating to Mathieu Functions: Characteristic Values, Coefficients, and Joining Factors. 2nd edition, National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C..
  • 35: 29.5 Special Cases and Limiting Forms
    where ce m ( z , θ ) and se m ( z , θ ) are Mathieu functions; see §28.2(vi).
    36: 28.6 Expansions for Small q
    §28.6(ii) Functions ce n and se n
    28.6.21 2 1 / 2 ce 0 ( z , q ) = 1 1 2 q cos 2 z + 1 32 q 2 ( cos 4 z 2 ) 1 128 q 3 ( 1 9 cos 6 z 11 cos 2 z ) + ,
    28.6.22 ce 1 ( z , q ) = cos z 1 8 q cos 3 z + 1 128 q 2 ( 2 3 cos 5 z 2 cos 3 z cos z ) 1 1024 q 3 ( 1 9 cos 7 z 8 9 cos 5 z 1 3 cos 3 z + 2 cos z ) + ,
    28.6.24 ce 2 ( z , q ) = cos 2 z 1 4 q ( 1 3 cos 4 z 1 ) + 1 128 q 2 ( 1 3 cos 6 z 76 9 cos 2 z ) + ,
    28.6.25 se 2 ( z , q ) = sin 2 z 1 12 q sin 4 z + 1 128 q 2 ( 1 3 sin 6 z 4 9 sin 2 z ) + .
    37: Bibliography E
  • D. Erricolo and G. Carluccio (2013) Algorithm 934: Fortran 90 subroutines to compute Mathieu functions for complex values of the parameter. ACM Trans. Math. Softw. 40 (1), pp. 8:1–8:19.
  • D. Erricolo (2006) Algorithm 861: Fortran 90 subroutines for computing the expansion coefficients of Mathieu functions using Blanch’s algorithm. ACM Trans. Math. Software 32 (4), pp. 622–634.
  • 38: Bibliography Z
  • C. H. Ziener, M. Rückl, T. Kampf, W. R. Bauer, and H. P. Schlemmer (2012) Mathieu functions for purely imaginary parameters. J. Comput. Appl. Math. 236 (17), pp. 4513–4524.
  • 39: 28.31 Equations of Whittaker–Hill and Ince
    28.31.3 w ′′ + ξ sin ( 2 z ) w + ( η p ξ cos ( 2 z ) ) w = 0 .
    28.31.4 w e , s ( z ) = = 0 A 2 + s cos ( 2 + s ) z , s = 0 , 1 ,
    28.31.5 w o , s ( z ) = = 0 B 2 + s sin ( 2 + s ) z , s = 1 , 2 ,
    28.31.18 w ′′ + ( η 1 8 ξ 2 ( p + 1 ) ξ cos ( 2 z ) + 1 8 ξ 2 cos ( 4 z ) ) w = 0 ,
    40: Bibliography F
  • D. Frenkel and R. Portugal (2001) Algebraic methods to compute Mathieu functions. J. Phys. A 34 (17), pp. 3541–3551.
  • Y. Fukui and T. Horiguchi (1992) Characteristic values of the integral equation satisfied by the Mathieu functions and its application to a system with chirality-pair interaction on a one-dimensional lattice. Phys. A 190 (3-4), pp. 346–362.