About the Project

Legendre relation for the hypergeometric function

AdvancedHelp

(0.011 seconds)

21—30 of 34 matching pages

21: 18.30 Associated OP’s
β–Ί
§18.30(i) Associated Jacobi Polynomials
β–Ίwhere the generalized hypergeometric function F 3 4 is defined by (16.2.1). … β–Ί
§18.30(ii) Associated Legendre Polynomials
β–ΊFor the confluent hypergeometric function U see §13.2(i). … β–ΊFor Gauss’ hypergeometric function F see (15.2.1). …
22: 19.1 Special Notation
β–ΊAll derivatives are denoted by differentials, not by primes. β–ΊThe first set of main functions treated in this chapter are Legendre’s complete integrals …of the first, second, and third kinds, respectively, and Legendre’s incomplete integrals … β–ΊIn Abramowitz and Stegun (1964, Chapter 17) the functions (19.1.1) and (19.1.2) are denoted, in order, by K ⁑ ( Ξ± ) , E ⁑ ( Ξ± ) , Ξ  ⁑ ( n \ Ξ± ) , F ⁑ ( Ο• \ Ξ± ) , E ⁑ ( Ο• \ Ξ± ) , and Ξ  ⁑ ( n ; Ο• \ Ξ± ) , where Ξ± = arcsin ⁑ k and n is the Ξ± 2 (not related to k ) in (19.1.1) and (19.1.2). … β–Ί R a ⁑ ( b 1 , b 2 , , b n ; z 1 , z 2 , , z n ) is a multivariate hypergeometric function that includes all the functions in (19.1.3). …
23: 19.21 Connection Formulas
β–ΊLegendre’s relation (19.7.1) can be written … β–ΊThe complete cases of R F and R G have connection formulas resulting from those for the Gauss hypergeometric function (Erdélyi et al. (1953a, §2.9)). … β–ΊIf 0 < p < z and y = z + 1 , then as p 0 (19.21.6) reduces to Legendre’s relation (19.21.1). … β–ΊChange-of-parameter relations can be used to shift the parameter p of R J from either circular region to the other, or from either hyperbolic region to the other (§19.20(iii)). … β–Ί
19.21.12 ( p x ) ⁒ R J ⁑ ( x , y , z , p ) + ( q x ) ⁒ R J ⁑ ( x , y , z , q ) = 3 ⁒ R F ⁑ ( x , y , z ) 3 ⁒ R C ⁑ ( ξ , η ) ,
24: Bibliography H
β–Ί
  • P. I. HadΕΎi (1969) Certain integrals that contain a probability function and degenerate hypergeometric functions. Bul. Akad. SΜ†tiince RSS Moldoven 1969 (2), pp. 40–47 (Russian).
  • β–Ί
  • P. I. HadΕΎi (1970) Some integrals that contain a probability function and hypergeometric functions. Bul. Akad. Ε tiince RSS Moldoven 1970 (1), pp. 49–62 (Russian).
  • β–Ί
  • P. I. HadΕΎi (1978) Sums with cylindrical functions that reduce to the probability function and to related functions. Bul. Akad. Shtiintse RSS Moldoven. 1978 (3), pp. 80–84, 95 (Russian).
  • β–Ί
  • N. Hale and A. Townsend (2016) A fast FFT-based discrete Legendre transform. IMA J. Numer. Anal. 36 (4), pp. 1670–1684.
  • β–Ί
  • Y. P. Hsu (1993) Development of a Gaussian hypergeometric function code in complex domains. Internat. J. Modern Phys. C 4 (4), pp. 805–840.
  • 25: Bibliography R
    β–Ί
  • D. St. P. Richards (Ed.) (1992) Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications. Contemporary Mathematics, Vol. 138, American Mathematical Society, Providence, RI.
  • β–Ί
  • D. St. P. Richards (2004) Total positivity properties of generalized hypergeometric functions of matrix argument. J. Statist. Phys. 116 (1-4), pp. 907–922.
  • β–Ί
  • L. Robin (1957) Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome I. Gauthier-Villars, Paris.
  • β–Ί
  • Hans-J. Runckel (1971) On the zeros of the hypergeometric function. Math. Ann. 191 (1), pp. 53–58.
  • β–Ί
  • J. Rushchitsky and S. Rushchitska (2000) On Simple Waves with Profiles in the form of some Special Functions—Chebyshev-Hermite, Mathieu, Whittaker—in Two-phase Media. In Differential Operators and Related Topics, Vol. I (Odessa, 1997), Operator Theory: Advances and Applications, Vol. 117, pp. 313–322.
  • 26: Bibliography G
    β–Ί
  • F. Gao and V. J. W. Guo (2013) Contiguous relations and summation and transformation formulae for basic hypergeometric series. J. Difference Equ. Appl. 19 (12), pp. 2029–2042.
  • β–Ί
  • W. Gautschi (1959b) Some elementary inequalities relating to the gamma and incomplete gamma function. J. Math. Phys. 38 (1), pp. 77–81.
  • β–Ί
  • W. Gautschi (2002a) Computation of Bessel and Airy functions and of related Gaussian quadrature formulae. BIT 42 (1), pp. 110–118.
  • β–Ί
  • A. Gervois and H. Navelet (1985a) Integrals of three Bessel functions and Legendre functions. I. J. Math. Phys. 26 (4), pp. 633–644.
  • β–Ί
  • A. Gervois and H. Navelet (1985b) Integrals of three Bessel functions and Legendre functions. II. J. Math. Phys. 26 (4), pp. 645–655.
  • 27: 19.25 Relations to Other Functions
    §19.25 Relations to Other Functions
    β–Ί
    §19.25(i) Legendre’s Integrals as Symmetric Integrals
    β–Ί
    §19.25(iii) Symmetric Integrals as Legendre’s Integrals
    β–Ί
    §19.25(vii) Hypergeometric Function
    β–Ί
    28: Bibliography
    β–Ί
  • J. Abad and J. Sesma (1995) Computation of the regular confluent hypergeometric function. The Mathematica Journal 5 (4), pp. 74–76.
  • β–Ί
  • V. S. Adamchik and H. M. Srivastava (1998) Some series of the zeta and related functions. Analysis (Munich) 18 (2), pp. 131–144.
  • β–Ί
  • G. E. Andrews (1974) Applications of basic hypergeometric functions. SIAM Rev. 16 (4), pp. 441–484.
  • β–Ί
  • T. M. Apostol and T. H. Vu (1984) Dirichlet series related to the Riemann zeta function. J. Number Theory 19 (1), pp. 85–102.
  • β–Ί
  • F. M. Arscott (1964a) Integral equations and relations for Lamé functions. Quart. J. Math. Oxford Ser. (2) 15, pp. 103–115.
  • 29: Bibliography D
    β–Ί
  • A. Deaño, J. Segura, and N. M. Temme (2010) Computational properties of three-term recurrence relations for Kummer functions. J. Comput. Appl. Math. 233 (6), pp. 1505–1510.
  • β–Ί
  • K. Dilcher (2002) Bernoulli Numbers and Confluent Hypergeometric Functions. In Number Theory for the Millennium, I (Urbana, IL, 2000), pp. 343–363.
  • β–Ί
  • T. M. Dunster (1999) Asymptotic approximations for the Jacobi and ultraspherical polynomials, and related functions. Methods Appl. Anal. 6 (3), pp. 21–56.
  • β–Ί
  • T. M. Dunster (2001c) Uniform asymptotic expansions for the reverse generalized Bessel polynomials, and related functions. SIAM J. Math. Anal. 32 (5), pp. 987–1013.
  • β–Ί
  • P. L. Duren (1991) The Legendre Relation for Elliptic Integrals. In Paul Halmos: Celebrating 50 Years of Mathematics, J. H. Ewing and F. W. Gehring (Eds.), pp. 305–315.
  • 30: 18.17 Integrals
    β–Ί
    Legendre
    β–Ί
    Legendre
    β–Ί
    Legendre
    β–Ί
    Legendre
    β–Ί
    Legendre