About the Project

Legendre relation

AdvancedHelp

(0.002 seconds)

51—60 of 74 matching pages

51: Bibliography C
  • B. C. Carlson (2006b) Table of integrals of squared Jacobian elliptic functions and reductions of related hypergeometric R -functions. Math. Comp. 75 (255), pp. 1309–1318.
  • A. D. Chave (1983) Numerical integration of related Hankel transforms by quadrature and continued fraction expansion. Geophysics 48 (12), pp. 1671–1686.
  • W. J. Cody (1991) Performance evaluation of programs related to the real gamma function. ACM Trans. Math. Software 17 (1), pp. 46–54.
  • M. W. Coffey (2009) An efficient algorithm for the Hurwitz zeta and related functions. J. Comput. Appl. Math. 225 (2), pp. 338–346.
  • H. S. Cohl and R. S. Costas-Santos (2020) Multi-Integral Representations for Associated Legendre and Ferrers Functions. Symmetry 12 (10).
  • 52: Bibliography V
  • G. Valent (1986) An integral transform involving Heun functions and a related eigenvalue problem. SIAM J. Math. Anal. 17 (3), pp. 688–703.
  • N. Virchenko and I. Fedotova (2001) Generalized Associated Legendre Functions and their Applications. World Scientific Publishing Co. Inc., Singapore.
  • H. Volkmer (1982) Integral relations for Lamé functions. SIAM J. Math. Anal. 13 (6), pp. 978–987.
  • 53: 23.15 Definitions
    54: 29.2 Differential Equations
    29.2.8 η = ( e 1 e 3 ) 1 / 2 ( z i K ) ,
    For the Weierstrass function see §23.2(ii). …
    55: 14.19 Toroidal (or Ring) Functions
    This form of the differential equation arises when Laplace’s equation is transformed into toroidal coordinates ( η , θ , ϕ ) , which are related to Cartesian coordinates ( x , y , z ) by …Most required properties of toroidal functions come directly from the results for P ν μ ( x ) and 𝑸 ν μ ( x ) . …
    14.19.5 𝑸 n 1 2 m ( cosh ξ ) = Γ ( n + 1 2 ) Γ ( n + m + 1 2 ) Γ ( n m + 1 2 ) 0 cosh ( m t ) ( cosh ξ + cosh t sinh ξ ) n + ( 1 / 2 ) d t , m < n + 1 2 .
    56: 23.6 Relations to Other Functions
    §23.6 Relations to Other Functions
    §23.6(i) Theta Functions
    §23.6(ii) Jacobian Elliptic Functions
    For relations to symmetric elliptic integrals see §19.25(vi). …
    57: 22.20 Methods of Computation
    §22.20(vi) Related Functions
    For additional information on methods of computation for the Jacobi and related functions, see the introductory sections in the following books: Lawden (1989), Curtis (1964b), Milne-Thomson (1950), and Spenceley and Spenceley (1947). …
    58: 19.2 Definitions
    §19.2(ii) Legendre’s Integrals
    Legendre’s complementary complete elliptic integrals are defined via … Bulirsch’s integrals are linear combinations of Legendre’s integrals that are chosen to facilitate computational application of Bartky’s transformation (Bartky (1938)). … Lastly, corresponding to Legendre’s incomplete integral of the third kind we have …
    §19.2(iv) A Related Function: R C ( x , y )
    59: Bibliography
  • V. S. Adamchik and H. M. Srivastava (1998) Some series of the zeta and related functions. Analysis (Munich) 18 (2), pp. 131–144.
  • W. A. Al-Salam and L. Carlitz (1959) Some determinants of Bernoulli, Euler and related numbers. Portugal. Math. 18, pp. 91–99.
  • W. L. Anderson (1982) Algorithm 588. Fast Hankel transforms using related and lagged convolutions. ACM Trans. Math. Software 8 (4), pp. 369–370.
  • T. M. Apostol and T. H. Vu (1984) Dirichlet series related to the Riemann zeta function. J. Number Theory 19 (1), pp. 85–102.
  • F. M. Arscott (1964a) Integral equations and relations for Lamé functions. Quart. J. Math. Oxford Ser. (2) 15, pp. 103–115.
  • 60: 19.1 Special Notation
    l , m , n nonnegative integers.
    All derivatives are denoted by differentials, not by primes. The first set of main functions treated in this chapter are Legendre’s complete integrals …of the first, second, and third kinds, respectively, and Legendre’s incomplete integrals … In Abramowitz and Stegun (1964, Chapter 17) the functions (19.1.1) and (19.1.2) are denoted, in order, by K ( α ) , E ( α ) , Π ( n \ α ) , F ( ϕ \ α ) , E ( ϕ \ α ) , and Π ( n ; ϕ \ α ) , where α = arcsin k and n is the α 2 (not related to k ) in (19.1.1) and (19.1.2). …