About the Project

Legendre%20functions

AdvancedHelp

(0.004 seconds)

1—10 of 18 matching pages

1: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • J. C. Adams and P. N. Swarztrauber (1997) SPHEREPACK 2.0: A Model Development Facility. NCAR Technical Note Technical Report TN-436-STR, National Center for Atmospheric Research.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • S. V. Aksenov, M. A. Savageau, U. D. Jentschura, J. Becher, G. Soff, and P. J. Mohr (2003) Application of the combined nonlinear-condensation transformation to problems in statistical analysis and theoretical physics. Comput. Phys. Comm. 150 (1), pp. 1–20.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • 2: 14.30 Spherical and Spheroidal Harmonics
    P n m ( x ) and Q n m ( x ) ( x > 1 ) are often referred to as the prolate spheroidal harmonics of the first and second kinds, respectively. P n m ( i x ) and Q n m ( i x ) ( x > 0 ) are known as oblate spheroidal harmonics of the first and second kinds, respectively. Segura and Gil (1999) introduced the scaled oblate spheroidal harmonics R n m ( x ) = e i π n / 2 P n m ( i x ) and T n m ( x ) = i e i π n / 2 Q n m ( i x ) which are real when x > 0 and n = 0 , 1 , 2 , . …
    Herglotz generating function
    The following is the Herglotz generating function
    3: 19.36 Methods of Computation
    Legendre’s integrals can be computed from symmetric integrals by using the relations in §19.25(i). … (In Legendre’s notation the modulus k approaches 0 or 1.) … For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). … For series expansions of Legendre’s integrals see §19.5. …
    4: Bibliography O
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • F. W. J. Olver and J. M. Smith (1983) Associated Legendre functions on the cut. J. Comput. Phys. 51 (3), pp. 502–518.
  • F. W. J. Olver (1975b) Legendre functions with both parameters large. Philos. Trans. Roy. Soc. London Ser. A 278, pp. 175–185.
  • F. W. J. Olver (1980b) Whittaker functions with both parameters large: Uniform approximations in terms of parabolic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 86 (3-4), pp. 213–234.
  • K. Ono (2000) Distribution of the partition function modulo m . Ann. of Math. (2) 151 (1), pp. 293–307.
  • 5: 18.40 Methods of Computation
    Given the power moments, μ n = a b x n d μ ( x ) , n = 0 , 1 , 2 , , can these be used to find a unique μ ( x ) , a non-decreasing, real, function of x , in the case that the moment problem is determined? Should a unique solution not exist the moment problem is then indeterminant. … Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . Gautschi (2004, p. 119–120) has explored the ε 0 + limit via the Wynn ε -algorithm, (3.9.11) to accelerate convergence, finding four to eight digits of precision in w ( x ) , depending smoothly on x , for N 4000 , for an example involving first numerator Legendre OP’s. … H ( x ) being the Heaviside step-function, see (1.16.13). … The example chosen is inversion from the α n , β n for the weight function for the repulsive Coulomb–Pollaczek, RCP, polynomials of (18.39.50). …
    6: 22.3 Graphics
    §22.3(i) Real Variables: Line Graphs
    §22.3(iii) Complex z ; Real k
    In the graphics shown in this subsection height corresponds to the absolute value of the function and color to the phase. …
    §22.3(iv) Complex k
    In Figures 22.3.24 and 22.3.25, height corresponds to the absolute value of the function and color to the phase. …
    7: Software Index
    Open Source With Book Commercial
    20 Theta Functions
    ‘✓’ indicates that a software package implements the functions in a section; ‘a’ indicates available functionality through optional or add-on packages; an empty space indicates no known support. … In the list below we identify four main sources of software for computing special functions. …
  • Commercial Software.

    Such software ranges from a collection of reusable software parts (e.g., a library) to fully functional interactive computing environments with an associated computing language. Such software is usually professionally developed, tested, and maintained to high standards. It is available for purchase, often with accompanying updates and consulting support.

  • The following are web-based software repositories with significant holdings in the area of special functions. …
    8: 27.2 Functions
    §27.2 Functions
    Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … Gauss and Legendre conjectured that π ( x ) is asymptotic to x / ln x as x : …(See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) … This is Jordan’s function. …
    9: Bibliography L
  • G. Labahn and M. Mutrie (1997) Reduction of Elliptic Integrals to Legendre Normal Form. Technical report Technical Report 97-21, Department of Computer Science, University of Waterloo, Waterloo, Ontario.
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • A. M. Legendre (1808) Essai sur la Théorie des Nombres. 2nd edition, Courcier, Paris.
  • A. M. Legendre (1825) Traité des fonctions elliptiques et des intégrales Eulériennes. Huzard-Courcier, Paris.
  • 10: Bibliography B
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley and J. Nayler (1935) A short table of the functions Ki n ( x ) , from n = 1 to n = 16 . Phil. Mag. Series 7 20, pp. 343–347.
  • S. Bielski (2013) Orthogonality relations for the associated Legendre functions of imaginary order. Integral Transforms Spec. Funct. 24 (4), pp. 331–337.
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.