About the Project

Lauricella%0Afunction

AdvancedHelp

(0.002 seconds)

11—20 of 699 matching pages

11: 32.4 Isomonodromy Problems
32.4.10 z u 0 = θ u 0 z v 0 v 1 ,
32.4.12 z v 0 = 2 v 0 u 1 v 1 + v 0 + ( u 0 ( 2 v 0 z ) / v 1 ) ,
If w = u 0 / ( v 0 v 1 ) , then …where
32.4.16 θ 0 = 4 v 0 z ( θ ( 1 z 4 v 0 ) + z 2 v 0 2 v 0 v 1 u 0 + u 1 v 1 ) .
12: 14.33 Tables
  • Abramowitz and Stegun (1964, Chapter 8) tabulates 𝖯 n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 0 ( .01 ) 1 , 5–8D; 𝖯 n ( x ) for n = 1 ( 1 ) 4 , 9 , 10 , x = 0 ( .01 ) 1 , 5–7D; 𝖰 n ( x ) and 𝖰 n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 0 ( .01 ) 1 , 6–8D; P n ( x ) and P n ( x ) for n = 0 ( 1 ) 5 , 9 , 10 , x = 1 ( .2 ) 10 , 6S; Q n ( x ) and Q n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 1 ( .2 ) 10 , 6S. (Here primes denote derivatives with respect to x .)

  • Zhang and Jin (1996, Chapter 4) tabulates 𝖯 n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 0 ( .1 ) 1 , 7D; 𝖯 n ( cos θ ) for n = 1 ( 1 ) 4 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖰 n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 0 ( .1 ) 0.9 , 8S; 𝖰 n ( cos θ ) for n = 0 ( 1 ) 3 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖯 n m ( x ) for m = 1 ( 1 ) 4 , n m = 0 ( 1 ) 2 , n = 10 , x = 0 , 0.5 , 8S; 𝖰 n m ( x ) for m = 1 ( 1 ) 4 , n = 0 ( 1 ) 2 , 10 , 8S; 𝖯 ν m ( cos θ ) for m = 0 ( 1 ) 3 , ν = 0 ( .25 ) 5 , θ = 0 ( 15 ) 90 , 5D; P n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 1 ( 1 ) 10 , 7S; Q n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 2 ( 1 ) 10 , 8S. Corresponding values of the derivative of each function are also included, as are 6D values of the first 5 ν -zeros of 𝖯 ν m ( cos θ ) and of its derivative for m = 0 ( 1 ) 4 , θ = 10 , 30 , 150 .

  • Belousov (1962) tabulates 𝖯 n m ( cos θ ) (normalized) for m = 0 ( 1 ) 36 , n m = 0 ( 1 ) 56 , θ = 0 ( 2.5 ) 90 , 6D.

  • Žurina and Karmazina (1964, 1965) tabulate the conical functions 𝖯 1 2 + i τ ( x ) for τ = 0 ( .01 ) 50 , x = 0.9 ( .1 ) 0.9 , 7S; P 1 2 + i τ ( x ) for τ = 0 ( .01 ) 50 , x = 1.1 ( .1 ) 2 ( .2 ) 5 ( .5 ) 10 ( 10 ) 60 , 7D. Auxiliary tables are included to facilitate computation for larger values of τ when 1 < x < 1 .

  • Žurina and Karmazina (1963) tabulates the conical functions 𝖯 1 2 + i τ 1 ( x ) for τ = 0 ( .01 ) 25 , x = 0.9 ( .1 ) 0.9 , 7S; P 1 2 + i τ 1 ( x ) for τ = 0 ( .01 ) 25 , x = 1.1 ( .1 ) 2 ( .2 ) 5 ( .5 ) 10 ( 10 ) 60 , 7S. Auxiliary tables are included to assist computation for larger values of τ when 1 < x < 1 .

  • 13: 15.15 Sums
    15.15.1 𝐅 ( a , b c ; 1 z ) = ( 1 z 0 z ) a s = 0 ( a ) s s ! 𝐅 ( s , b c ; 1 z 0 ) ( 1 z z 0 ) s .
    Here z 0 ( 0 ) is an arbitrary complex constant and the expansion converges when | z z 0 | > max ( | z 0 | , | z 0 1 | ) . …
    14: 11.15 Approximations
  • Luke (1975, pp. 416–421) gives Chebyshev-series expansions for 𝐇 n ( x ) , 𝐋 n ( x ) , 0 | x | 8 , and 𝐇 n ( x ) Y n ( x ) , x 8 , for n = 0 , 1 ; 0 x t m 𝐇 0 ( t ) d t , 0 x t m 𝐋 0 ( t ) d t , 0 | x | 8 , m = 0 , 1 and 0 x ( 𝐇 0 ( t ) Y 0 ( t ) ) d t , x t 1 ( 𝐇 0 ( t ) Y 0 ( t ) ) d t , x 8 ; the coefficients are to 20D.

  • MacLeod (1993) gives Chebyshev-series expansions for 𝐋 0 ( x ) , 𝐋 1 ( x ) , 0 x 16 , and I 0 ( x ) 𝐋 0 ( x ) , I 1 ( x ) 𝐋 1 ( x ) , x 16 ; the coefficients are to 20D.

  • Newman (1984) gives polynomial approximations for 𝐇 n ( x ) for n = 0 , 1 , 0 x 3 , and rational-fraction approximations for 𝐇 n ( x ) Y n ( x ) for n = 0 , 1 , x 3 . The maximum errors do not exceed 1.2×10⁻⁸ for the former and 2.5×10⁻⁸ for the latter.

  • 15: 28.3 Graphics
    See accompanying text
    Figure 28.3.1: ce 2 n ( x , 1 ) for 0 x π / 2 , n = 0 , 1 , 2 , 3 . Magnify
    See accompanying text
    Figure 28.3.2: ce 2 n ( x , 10 ) for 0 x π / 2 , n = 0 , 1 , 2 , 3 . Magnify
    See accompanying text
    Figure 28.3.3: ce 2 n + 1 ( x , 1 ) for 0 x π / 2 , n = 0 , 1 , 2 , 3 . Magnify
    See accompanying text
    Figure 28.3.4: ce 2 n + 1 ( x , 10 ) for 0 x π / 2 , n = 0 , 1 , 2 , 3 . Magnify
    See accompanying text
    Figure 28.3.9: ce 0 ( x , q ) for 0 x 2 π , 0 q 10 . Magnify 3D Help
    16: 32.7 Bäcklund Transformations
    If γ = 0 and α δ 0 , then set α = 1 and δ = 1 , without loss of generality. …Similar results hold for P III  with δ = 0 and β γ 0 . … Let W 0 = W ( z ; α 0 , β 0 , γ 0 , 1 2 ) and W 1 = W ( z ; α 1 , β 1 , γ 1 , 1 2 ) be solutions of P V , where …and assume Φ 0 . … for j = 0 , 1 , 2 , , where …
    17: 19.37 Tables
    Tabulated for k = 0 ( .01 ) 1 to 10D by Fettis and Caslin (1964), and for k = 0 ( .02 ) 1 to 7D by Zhang and Jin (1996, p. 673). … Tabulated for k 2 = 0 ( .001 ) 1 to 8D by Beli͡akov et al. (1962). … Tabulated for ϕ = 0 ( 5 ) 90 , k 2 = 0 ( .01 ) 1 to 10D by Fettis and Caslin (1964). Tabulated for ϕ = 0 ( 1 ) 90 , k 2 = 0 ( .01 ) 1 to 7S by Beli͡akov et al. (1962). … Tabulated for ϕ = 0 ( 5 ) 90 , k = 0 ( .01 ) 1 to 10D by Fettis and Caslin (1964). …
    18: 12.19 Tables
  • Abramowitz and Stegun (1964, Chapter 19) includes U ( a , x ) and V ( a , x ) for ± a = 0 ( .1 ) 1 ( .5 ) 5 , x = 0 ( .1 ) 5 , 5S; W ( a , ± x ) for ± a = 0 ( .1 ) 1 ( 1 ) 5 , x = 0 ( .1 ) 5 , 4-5D or 4-5S.

  • Miller (1955) includes W ( a , x ) , W ( a , x ) , and reduced derivatives for a = 10 ( 1 ) 10 , x = 0 ( .1 ) 10 , 8D or 8S. Modulus and phase functions, and also other auxiliary functions are tabulated.

  • Kireyeva and Karpov (1961) includes D p ( x ( 1 + i ) ) for ± x = 0 ( .1 ) 5 , p = 0 ( .1 ) 2 , and ± x = 5 ( .01 ) 10 , p = 0 ( .5 ) 2 , 7D.

  • Karpov and Čistova (1964) includes D p ( x ) for p = 2 ( .1 ) 0 , ± x = 0 ( .01 ) 5 ; p = 2 ( .05 ) 0 , ± x = 5 ( .01 ) 10 , 6D.

  • Karpov and Čistova (1968) includes e 1 4 x 2 D p ( x ) and e 1 4 x 2 D p ( i x ) for x = 0 ( .01 ) 5 and x 1 = 0(.001 or .0001)5, p = 1 ( .1 ) 1 , 7D or 8S.

  • 19: 3.4 Differentiation
    where ξ 0 and ξ 1 I . For the values of n 0 and n 1 used in the formulas below … For corresponding formulas for second, third, and fourth derivatives, with t = 0 , see Collatz (1960, Table III, pp. 538–539). … f ( z ) = e z , x 0 = 0 . … For partial derivatives we use the notation u t , s = u ( x 0 + t h , y 0 + s h ) . …
    20: 14.4 Graphics
    See accompanying text
    Figure 14.4.1: 𝖯 ν 0 ( x ) , ν = 0 , 1 2 , 1 , 2 , 4 . Magnify
    See accompanying text
    Figure 14.4.2: 𝖰 ν 0 ( x ) , ν = 0 , 1 2 , 1 , 2 , 4 . Magnify
    See accompanying text
    Figure 14.4.7: 𝖯 0 μ ( x ) , μ = 0 , 1 2 , 1 , 2 , 4 . Magnify
    See accompanying text
    Figure 14.4.8: 𝖰 0 μ ( x ) , μ = 0 , 1 2 , 1 , 2 , 4 . Magnify
    See accompanying text
    Figure 14.4.24: 𝑸 0 μ ( x ) , μ = 0 , 2 , 4 , 8 . Magnify