About the Project

Lamé polynomials

AdvancedHelp

(0.002 seconds)

21—30 of 37 matching pages

21: Bibliography S
  • R. Shail (1978) Lamé polynomial solutions to some elliptic crack and punch problems. Internat. J. Engrg. Sci. 16 (8), pp. 551–563.
  • 22: Bibliography P
  • J. Patera and P. Winternitz (1973) A new basis for the representation of the rotation group. Lamé and Heun polynomials. J. Mathematical Phys. 14 (8), pp. 1130–1139.
  • 23: Errata
  • Chapters 1 Algebraic and Analytic Methods, 10 Bessel Functions, 14 Legendre and Related Functions, 18 Orthogonal Polynomials, 29 Lamé Functions

    Over the preceding two months, the subscript parameters of the Ferrers and Legendre functions, 𝖯 n , 𝖰 n , P n , Q n , 𝑸 n and the Laguerre polynomial, L n , were incorrectly displayed as superscripts. Reported by Roy Hughes on 2022-05-23

  • 24: 29.7 Asymptotic Expansions
    §29.7(i) Eigenvalues
    The same Poincaré expansion holds for b ν m + 1 ( k 2 ) , since …
    §29.7(ii) Lamé Functions
    In Müller (1966c) it is shown how these expansions lead to asymptotic expansions for the Lamé functions 𝐸𝑐 ν m ( z , k 2 ) and 𝐸𝑠 ν m ( z , k 2 ) . Weinstein and Keller (1985) give asymptotics for solutions of Hill’s equation (§28.29(i)) that are applicable to the Lamé equation.
    25: 28.34 Methods of Computation
  • (f)

    Asymptotic approximations by zeros of orthogonal polynomials of increasing degree. See Volkmer (2008). This method also applies to eigenvalues of the Whittaker–Hill equation (§28.31(i)) and eigenvalues of Lamé functions (§29.3(i)).

  • 26: Bibliography V
  • H. Volkmer (1999) Expansions in products of Heine-Stieltjes polynomials. Constr. Approx. 15 (4), pp. 467–480.
  • H. Volkmer (1982) Integral relations for Lamé functions. SIAM J. Math. Anal. 13 (6), pp. 978–987.
  • H. Volkmer (1984) Integral representations for products of Lamé functions by use of fundamental solutions. SIAM J. Math. Anal. 15 (3), pp. 559–569.
  • H. Volkmer (2004b) Four remarks on eigenvalues of Lamé’s equation. Anal. Appl. (Singap.) 2 (2), pp. 161–175.
  • H. Volkmer (2008) Approximation of eigenvalues of some differential equations by zeros of orthogonal polynomials. J. Comput. Appl. Math. 213 (2), pp. 488–500.
  • 27: 31.8 Solutions via Quadratures
    31.8.2 w ± ( 𝐦 ; λ ; z ) = Ψ g , N ( λ , z ) exp ( ± i ν ( λ ) 2 z 0 z t m 1 ( t 1 ) m 2 ( t a ) m 3 d t Ψ g , N ( λ , t ) t ( t 1 ) ( t a ) )
    Here Ψ g , N ( λ , z ) is a polynomial of degree g in λ and of degree N = m 0 + m 1 + m 2 + m 3 in z , that is a solution of the third-order differential equation satisfied by a product of any two solutions of Heun’s equation. … For 𝐦 = ( m 0 , 0 , 0 , 0 ) , these solutions reduce to Hermite’s solutions (Whittaker and Watson (1927, §23.7)) of the Lamé equation in its algebraic form. …When λ = 4 q approaches the ends of the gaps, the solution (31.8.2) becomes the corresponding Heun polynomial. …
    28: Bibliography B
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • H. Bateman (1905) A generalisation of the Legendre polynomial. Proc. London Math. Soc. (2) 3 (3), pp. 111–123.
  • G. Baxter (1961) Polynomials defined by a difference system. J. Math. Anal. Appl. 2 (2), pp. 223–263.
  • S. L. Belousov (1962) Tables of Normalized Associated Legendre Polynomials. Pergamon Press, The Macmillan Co., Oxford-New York.
  • M. Brack, M. Mehta, and K. Tanaka (2001) Occurrence of periodic Lamé functions at bifurcations in chaotic Hamiltonian systems. J. Phys. A 34 (40), pp. 8199–8220.
  • 29: Bibliography I
  • E. L. Ince (1940a) The periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60, pp. 47–63.
  • E. L. Ince (1940b) Further investigations into the periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60, pp. 83–99.
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • M. E. H. Ismail and D. R. Masson (1991) Two families of orthogonal polynomials related to Jacobi polynomials. Rocky Mountain J. Math. 21 (1), pp. 359–375.
  • M. E. H. Ismail (2005) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • 30: Bibliography W
  • X.-S. Wang and R. Wong (2011) Global asymptotics of the Meixner polynomials. Asymptotic Analysis 75 (3-4), pp. 211–231.
  • X.-S. Wang and R. Wong (2012) Asymptotics of orthogonal polynomials via recurrence relations. Anal. Appl. (Singap.) 10 (2), pp. 215–235.
  • Z. Wang and R. Wong (2006) Uniform asymptotics of the Stieltjes-Wigert polynomials via the Riemann-Hilbert approach. J. Math. Pures Appl. (9) 85 (5), pp. 698–718.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • J. A. Wilson (1978) Hypergeometric Series, Recurrence Relations and Some New Orthogonal Polynomials. Ph.D. Thesis, University of Wisconsin, Madison, WI.