About the Project

Lam%C3%A9%E2%80%93Wangerin%20functions

AdvancedHelp

(0.005 seconds)

11—20 of 962 matching pages

11: 16.13 Appell Functions
§16.13 Appell Functions
The following four functions of two real or complex variables x and y cannot be expressed as a product of two F 1 2 functions, in general, but they satisfy partial differential equations that resemble the hypergeometric differential equation (15.10.1):
16.13.1 F 1 ( α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m ( β ) n ( γ ) m + n m ! n ! x m y n , max ( | x | , | y | ) < 1 ,
16.13.4 F 4 ( α , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m + n ( γ ) m ( γ ) n m ! n ! x m y n , | x | + | y | < 1 .
12: 15.2 Definitions and Analytical Properties
§15.2(i) Gauss Series
The hypergeometric function F ( a , b ; c ; z ) is defined by the Gauss series … … On the circle of convergence, | z | = 1 , the Gauss series: …
§15.2(ii) Analytic Properties
13: 5.12 Beta Function
§5.12 Beta Function
Euler’s Beta Integral
See accompanying text
Figure 5.12.1: t -plane. Contour for first loop integral for the beta function. Magnify
See accompanying text
Figure 5.12.2: t -plane. Contour for second loop integral for the beta function. Magnify
Pochhammer’s Integral
14: 14.20 Conical (or Mehler) Functions
§14.20 Conical (or Mehler) Functions
§14.20(i) Definitions and Wronskians
§14.20(ii) Graphics
§14.20(x) Zeros and Integrals
15: 10.1 Special Notation
(For other notation see Notation for the Special Functions.) … For the spherical Bessel functions and modified spherical Bessel functions the order n is a nonnegative integer. For the other functions when the order ν is replaced by n , it can be any integer. For the Kelvin functions the order ν is always assumed to be real. … For older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).
16: 4.2 Definitions
§4.2(iii) The Exponential Function
§4.2(iv) Powers
Powers with General Bases
17: 12.14 The Function W ( a , x )
§12.14 The Function W ( a , x )
Other expansions, involving cos ( 1 4 x 2 ) and sin ( 1 4 x 2 ) , can be obtained from (12.4.3) to (12.4.6) by replacing a by i a and z by x e π i / 4 ; see Miller (1955, p. 80), and also (12.14.15) and (12.14.16). …
Bessel Functions
Confluent Hypergeometric Functions
§12.14(x) Modulus and Phase Functions
18: 8.17 Incomplete Beta Functions
§8.17 Incomplete Beta Functions
§8.17(ii) Hypergeometric Representations
§8.17(iii) Integral Representation
§8.17(iv) Recurrence Relations
§8.17(vi) Sums
19: 25.11 Hurwitz Zeta Function
§25.11 Hurwitz Zeta Function
§25.11(i) Definition
The Riemann zeta function is a special case: …
§25.11(ii) Graphics
§25.11(vi) Derivatives
20: 25.1 Special Notation
(For other notation see Notation for the Special Functions.)
k , m , n nonnegative integers.
primes on function symbols: derivatives with respect to argument.
The main function treated in this chapter is the Riemann zeta function ζ ( s ) . … The main related functions are the Hurwitz zeta function ζ ( s , a ) , the dilogarithm Li 2 ( z ) , the polylogarithm Li s ( z ) (also known as Jonquière’s function ϕ ( z , s ) ), Lerch’s transcendent Φ ( z , s , a ) , and the Dirichlet L -functions L ( s , χ ) .