L’Hôpital rule for derivatives
(0.003 seconds)
1—10 of 342 matching pages
1: 18.9 Recurrence Relations and Derivatives
2: 11.4 Basic Properties
…
►
►
§11.4(v) Recurrence Relations and Derivatives
… ►where denotes either or . … ►§11.4(vi) Derivatives with Respect to Order
►For derivatives with respect to the order , see Apelblat (1989) and Brychkov and Geddes (2005). …3: 23.3 Differential Equations
…
►
23.3.1
…
►Given and there is a unique lattice such that (23.3.1) and (23.3.2) are satisfied.
…
►Conversely, , , and the set are determined uniquely by the lattice independently of the choice of generators.
However, given any pair of generators , of , and with defined by (23.2.1), we can identify the individually, via
…
►
§23.3(ii) Differential Equations and Derivatives
…4: 1.4 Calculus of One Variable
…
►
§1.4(iii) Derivatives
… ►Higher Derivatives
… ►Chain Rule
… ►Leibniz’s Formula
… ►L’Hôpital’s Rule
…5: 25.1 Special Notation
…
►
►
…
►The main related functions are the Hurwitz zeta function , the dilogarithm , the polylogarithm (also known as Jonquière’s function ), Lerch’s transcendent , and the Dirichlet -functions .
nonnegative integers. |
|
… | |
primes |
on function symbols: derivatives with respect to argument. |
6: 25.15 Dirichlet -functions
§25.15 Dirichlet -functions
►§25.15(i) Definitions and Basic Properties
►The notation was introduced by Dirichlet (1837) for the meromorphic continuation of the function defined by the series … … ►§25.15(ii) Zeros
…7: 3.5 Quadrature
…
►
§3.5(i) Trapezoidal Rules
… ►The composite trapezoidal rule is … ►§3.5(ii) Simpson’s Rule
… ►The are the monic Laguerre polynomials (§18.3). … ►For the choice the recurrence relation (3.5.30_5) takes the form …8: 23.1 Special Notation
…
►
►
►The main functions treated in this chapter are the Weierstrass -function ; the Weierstrass zeta function ; the Weierstrass sigma function ; the elliptic modular function ; Klein’s complete invariant ; Dedekind’s eta function .
…
lattice in . |
|
… | |
primes |
derivatives with respect to the variable, except where indicated otherwise. |
… |
9: 23.21 Physical Applications
10: 23.6 Relations to Other Functions
…
►In this subsection , are any pair of generators of the lattice , and the lattice roots , , are given by (23.3.9).
…
►
23.6.13
►
23.6.14
…
►Again, in Equations (23.6.16)–(23.6.26), are any pair of generators of the lattice and are given by (23.3.9).
…
►Also, , , are the lattices with generators , , , respectively.
…